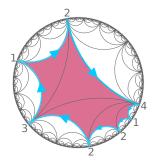
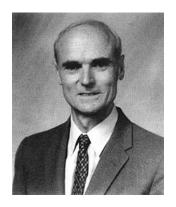


Ian Short and Margaret Stanier



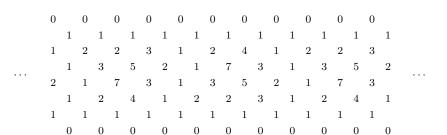
Workshop activities: https://student.desmos.com/join/8k8baa Open the activities in another tab. Use any sensible name to join. Make sure you have a pen and some scrap paper.

Donald Coxeter (1907-2003)



British-Canadian mathematician whose work inspired the rise of geometry

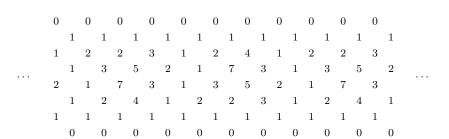
$$\begin{array}{ccc}
 & 1 \\
2 & & 1 \\
& & 1
\end{array}$$



1 1 1 1 1 1 1 1 1 1 1 4 . . .

$$\begin{array}{ccc}
 & b \\
 & a & d & ad - bc = 1
\end{array}$$

Frieze pattern codes

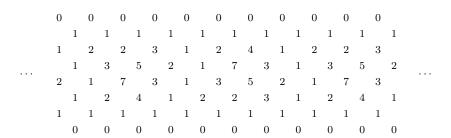


Coxeter's observation All frieze patterns are periodic.

The periodic part of the third row is called the **frieze pattern code**.

Building frieze patterns from a frieze pattern code

Building frieze patterns from a frieze pattern code



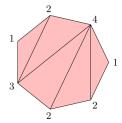
Arnold's mathematical experiments

Vladimir Arnold (1937-2010)

Mathematics is a part of physics. Physics is an experimental science, a part of natural science. Mathematics is the part of physics where experiments are cheap.

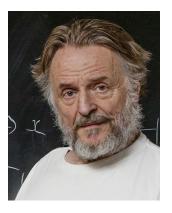
Activity 1

Exploring frieze patterns

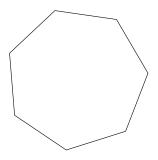


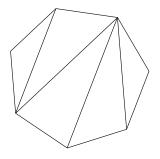
Coxeter's challenge

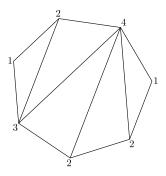
Coxeter's challenge Characterise frieze pattern codes.



I used to feel guilty in Cambridge that I spent all day playing games, while I was supposed to be doing mathematics. Then, when I discovered surreal numbers, I realized that playing games IS mathematics.

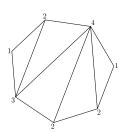






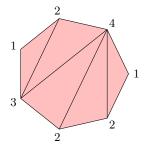
Conway's insight

. . .

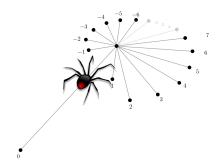


Activity 2

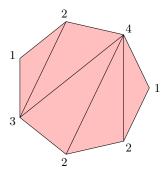
Constructing frieze patterns using triangulated polygons



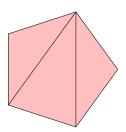
Frieze patterns with negative integers



Replacing polygons by paths

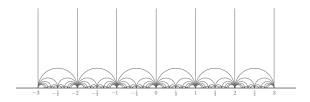


Frieze patterns with negative integers

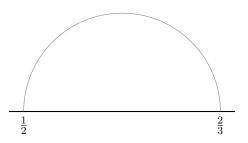


Activity 3 Frieze patterns with negative integers

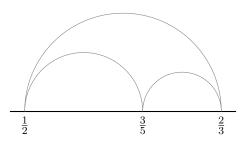
The Farey tessellation



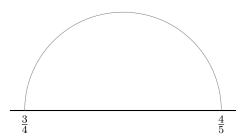
Farey mediant



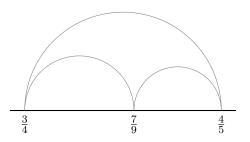
Farey mediant



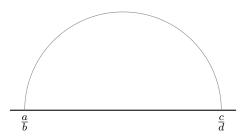
Farey mediant



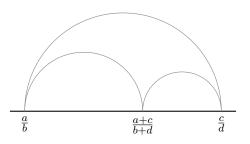
Farey mediant



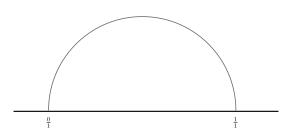
Farey mediant



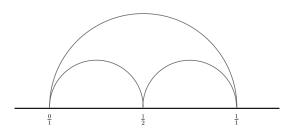
Farey mediant



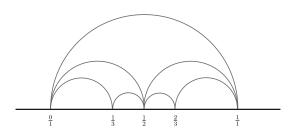
Repeated Farey mediants



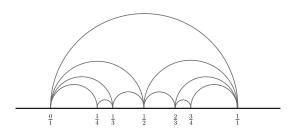
Repeated Farey mediants



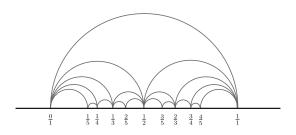
Repeated Farey mediants



Repeated Farey mediants



Repeated Farey mediants



Farey's fractions

386

Notices respecting New Books.

the largest denominator, then, in a part of the arranged Table, we should have $\frac{15}{52}$, $\frac{28}{97}$, $\frac{13}{45}$, $\frac{24}{83}$, $\frac{11}{38}$, &c.; and if the third of these fractions be given, we have $\frac{15+13}{52+45}=\frac{28}{97}$ the second: or $\frac{13+11}{45+38}=\frac{24}{83}$ the fourth of them; and so in all the other cases.

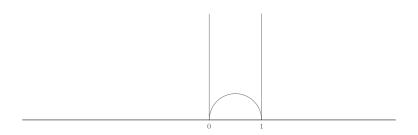
I am not acquainted, whether this curious property of vulgar fractions has been before pointed out?; or whether it may admit of any easy or general demonstration?; which are points on which I should be glad to learn the sentiments of some of your mathematical readers; and am

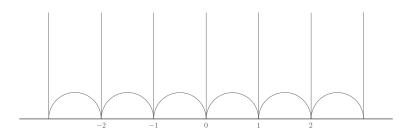
Sir,

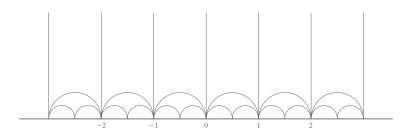
Your obedient humble servant,

Howland-street.

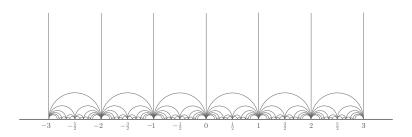
J. FAREY.



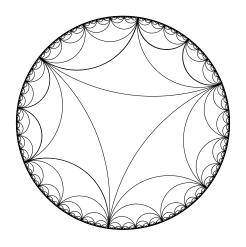




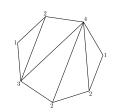
Farey tessellation

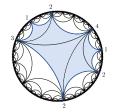


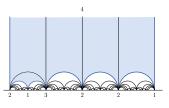
Farey tessellation in a disc



Embedding triangulated polygons in the Farey tessellation





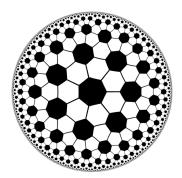


1 1 1 1

Activity 4

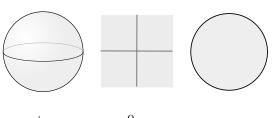
Embedding triangulated polygons in the Farey tessellation

A brief detour around the hyperbolic plane

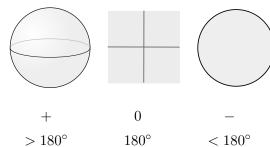


M.C. Escher's artwork

Circle limit III (1959)



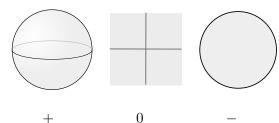
curvature



curvature triangle angles

 $>180^{\circ}$

 180°



curvature
triangle angles
circumference

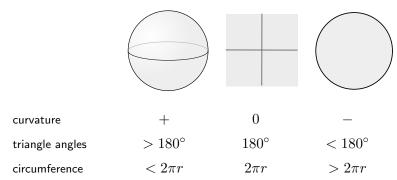
 $> 180^{\circ}$

180°

 $<180^{\circ}$

 $<2\pi r$ $2\pi r$

 $> 2\pi r$



Example

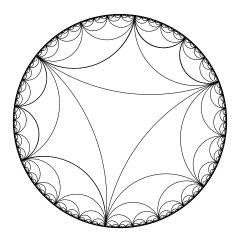
A Euclidean disc of radius 10 has circumference \simeq 60.

A hyperbolic disc of radius 10 has circumference \simeq 70 000.

Beltrami's paper models

Paper model of the hyperbolic plane by Eugenio Beltrami (1835–1900)

Farey tessellation



The Farey tessellation comprises congruent hyperbolic triangles with angles of zero degrees.

Hyperbolic geometry research thriving

Maryam Mirzakhani (1977-2017)

Awarded the Fields Medal in 2014 for outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces.

Activity 5

Paper models of the hyperbolic plane

http://www.theiff.org/images/IFF_HypSoccerBall.pdf