You are viewing information for England.  Change country.

Further pure mathematics

This module covers important topics in the theory of pure mathematics including: number theory; the algebraic theory of rings and fields; and metric spaces. You will develop your understanding of group theory and real analysis and will see how some of these ideas are applied to cryptography and fractals. To successfully study this module you must have an interest in pure mathematics and ideally should already have studied pure mathematics at level 2 as provided by our level 2 module, Pure mathematics (M208).

Modules count towards OU qualifications

OU qualifications are modular in structure; the credits from this undergraduate module could count towards a certificate of higher education, diploma of higher education, foundation degree or honours degree.

Browse qualifications in related subjects

Module

Module code
M303
Credits

Credits

  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
60
Study level
Across the UK, there are two parallel frameworks for higher education qualifications, the Framework for Higher Education Qualifications in England, Northern Ireland and Wales (FHEQ) and the Scottish Credit and Qualifications Framework (SCQF). These define a hierarchy of levels and describe the achievement expected at each level. The information provided shows how OU module levels correspond to these frameworks.
OU SCQF FHEQ
3 10 6
Study method
Distance Learning
Module cost
See Module registration
Entry requirements
See Entry requirements

Request your prospectus

Explore our subjects and courses

Request your copy now

What you will study

This module is based around six books with each one developing a particular topic in pure mathematics. A feature of the module is that we identify a core route through each book that is sufficient to pass the module but may not enable you to gain the higher grades.

Number Theory

In the first book we study the integers and prime numbers. In particular we look at classical problems that require integer solutions. For example finding all integer solutions to the equation 2x + 11y = 5. We also develop methods for solving linear congruences such as ax ≡ b (mod n) and in the final chapter we study the classical theorems of Fermat and Wilson.

Groups

In the second book we consolidate and build on the group theory presented at level 2 of our curriculum in Pure mathematics (M208). The book leads up to the classification of all finite abelian groups and ends with an introduction to the problem of classifying groups that are not abelian. On completion you will be able to use the Sylow Theorems to analyse the structure of appropriate finite groups.

Numbers and Rings

In the first half of this book we consider the solution of quadratic congruences, ax2 ≡ b (mod n). In the second half we use our knowledge of the integers to define and study the abstract algebraic structures known as rings.

Metric spaces I

In this book motivated by our understanding of how distance works for points in the plane, we define metrics, which can be used to give us an idea of distance between arbitrary objects (such as words or fractals). This allows to generalise the notion of what it means for a function to be continuous.

Rings and Fields

In this book we return to our study of algebra. We start by looking at polynomial rings and then continue our investigation of abstract algebraic structures. This unexpectedly leads to the resolution of some famous problems of antiquity such as ‘squaring the circle’ or ‘trisecting the angle’. The final chapter shows how algebraic ideas underlie the modern theory of cryptography.

Metric Spaces II

In this book we return to metric spaces. We look at the implications of our new definition of distance for understanding what it means for something to be connected. This book culminates in an introduction to the theory of fractals.

There is a non-assessed reader on the module website that provides an overview of the historical development of topological and metric spaces, and modern algebra. Where appropriate the reader includes information and/or links about modern applications and unsolved/recently solved problems.

Read the full content list here.

Professional recognition

This module may help you to gain membership of the Institute of Mathematics and its Applications (IMA). For further information, see the IMA website.

Teaching and assessment

Support from your tutor

You will have a tutor who will mark and comment on your written work, and whom you can ask for advice and guidance. We may also be able to offer group tutorials (either face-to-face or online) or day schools that you are encouraged, but not obliged, to attend. Where your face-to-face tutorials are held will depend on the distribution of students taking the module.

Contact us if you want to know more about study with The Open University before you register.

Assessment

The assessment details for this module can be found in the facts box above.

You can choose whether to submit your tutor-marked assignments (TMAs) on paper or online through the eTMA system. You may want to use the eTMA system for some of your assignments but submit on paper for others. This is entirely your choice.

Each of the six module books has an associated practice quiz on the module website. You can attempt these quizzes as many times as you wish and they do not count towards your final grade.

Each TMA is associated with a particular module book and consists of a mixture of questions: some of which contribute to your final grade, and some are developmental. The feedback you receive on your answers will help you to improve your knowledge and understanding of the study material and to develop important skills associated with the module.

Future availability

Further pure mathematics (M303) starts once a year – in October. This page describes the module that will start in October 2019. We expect it to start for the last time in October 2021.

Regulations

As a student of The Open University, you should be aware of the content of the academic regulations which are available on our Student Policies and Regulations website.

    Course work includes:

    6 Tutor-marked assignments (TMAs)
    1 Interactive computer-marked assignment (iCMA)
    Examination
    No residential school

    Course satisfaction survey

    See the satisfaction survey results for this course.


    Entry requirements

    This is an OU level 3 module. OU level 3 modules build on study skills and subject knowledge acquired from studies at OU levels 1 and 2. They are intended only for students who have recent experience of higher education in a related subject, preferably with the OU.

    This module is designed to follow on from Pure mathematics (M208).

    To pass this module, you will need:

    • to spend an average of at least 16–18 hours per week engaging with the module material
    • some familiarity with the following pure mathematics topics: group theory; linear algebra and real analysis.

    If you have any doubts about your mathematical knowledge and experience, our diagnostic quiz will help determine whether you are ready for this module.

    If you have any doubt about the suitability of the module, please speak to an adviser.

    Preparatory work

    There is no specific preparatory work required for this module but it may be helpful for you to revise group theory and continuity of real functions before the module begins.

    Register

    Start End Fee
    - - -

    No current presentation - see Future availability

    This module is expected to start for the last time in October 2025.

    Additional Costs

    Study costs

    There may be extra costs on top of the tuition fee, such as a computer, travel to tutorials, set books and internet access.

    If you're on a low income you might be eligible for help with some of these costs after your module has started.

    Ways to pay for this module

    Open University Student Budget Account

    The Open University Student Budget Accounts Ltd (OUSBA) offers a convenient 'pay as you go' option to pay your OU fees, which is a secure, quick and easy way to pay. Please note that The Open University works exclusively with OUSBA and is not able to offer you credit facilities from any other provider. All credit is subject to status and proof that you can afford the repayments.

    You pay the OU through OUSBA in one of the following ways:

    • Register now, pay later – OUSBA pays your module fee direct to the OU. You then repay OUSBA interest-free and in full just before your module starts. 0% APR representative. This option could give you the extra time you may need to secure the funding to repay OUSBA.
    • Pay by instalments – OUSBA calculates your monthly fee and number of instalments based on the cost of the module you are studying. APR 5.1% representative.

    Joint loan applications

    If you feel you would be unable to obtain an OUSBA loan on your own due to credit history or affordability issues, OUSBA offers the option to apply for a joint loan application with a third party. For example, your husband, wife, partner, parent, sibling or friend. In such cases, OUSBA will be required to carry out additional affordability checks separately and/or collectively for both joint applicants who will be jointly and severally liable for loan repayments.

    As additional affordability checks are required when processing joint loan applications, unfortunately, an instant decision cannot be given. On average the processing time for a joint loan application is five working days from receipt of the required documentation.

    Read more about Open University Student Budget Accounts (OUSBA).  

    Employer sponsorship

    Studying with The Open University can boost your employability. OU courses are recognised and respected by employers for their excellence and the commitment they take to complete. They also value the skills that students learn and can apply in the workplace.

    More than one in ten OU students are sponsored by their employer, and over 30,000 employers have used the OU to develop staff so far. If the module you’ve chosen is geared towards your job or developing your career, you could approach your employer to see if they will sponsor you by paying some or all of the fees. 

    • Your employer just needs to complete a simple form to confirm how much they will be paying and we will invoice them.
    • You won’t need to get your employer to complete the form until after you’ve chosen your module.  

    Credit/debit card

    You can pay part or all of your tuition fees upfront with a debit or credit card when you register for each module. 

    We accept American Express, Mastercard, Visa and Visa Electron. 

    Mixed payments

    We know that sometimes you may want to combine payment options. For example, you may wish to pay part of your tuition fee with a debit card and pay the remainder in instalments through an Open University Student Budget Account (OUSBA).


    For more information about combining payment options, speak to an adviser or book a call back at a time convenient to you.


    Please note: your permanent address/domicile will affect your fee status and therefore the fees you are charged and any financial support available to you. The fees and funding information provided here is valid for modules starting before 31 July 2020. Fees normally increase annually in line with inflation and the University's strategic approach to fees. 

    This information was provided on 19/10/2019.

    What's included

    Six printed module books and a handbook (which can be taken into the examination). Informal online recorded lectures given by the module team. A study planner, history reader, module forums, assessment materials, practice quizzes and optional supplementary information available via the module website.

    You will need

    A calculator would be useful for the number theory-related parts of the module, though it is not essential. A simple four-function (+ – x ÷) model would suffice.

    Computing requirements

    A computing device with a browser and broadband internet access is required for this module. Any modern browser will be suitable for most computer activities. Functionality may be limited on mobile devices.

    Any additional software will be provided, or is generally freely available. However, some activities may have more specific requirements. For this reason, you will need to be able to install and run additional software on a device that meets the requirements below.

    A desktop or laptop computer with either:

    • Windows 7 or higher
    • Mac OS X 10.7 or higher

    The screen of the device must have a resolution of at least 1024 pixels horizontally and 768 pixels vertically.

    To join in the spoken conversation in our online rooms we recommend a headset (headphones or earphones with an integrated microphone).

    Our Skills for OU study website has further information including computing skills for study, computer security, acquiring a computer and Microsoft software offers for students.

    If you have a disability

    The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying M303 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

    To find out more about what kind of support and adjustments might be available, contact us or visit our Disability support website.