You are viewing information for England.  Change country.

Engineering small worlds: micro and nano technologies

This module demonstrates how matter can be manipulated at the atomic and molecular scale to serve the engineering needs of society for ever-smaller systems acting as intelligent monitors, controllers and micro-environments. It covers: science at the micro and nano scales; engineering micro and nano-scale systems; structural/inertial devices; electronic/optical devices; and fluidic/biological devices. The module examines how micro and nano technologies are being advanced. You’ll also gain a firm grounding in engineering on both micro and nano scales, through the detailed study of how scientific and engineering principles are applied to the design and manufacture of real devices.

Modules count towards OU qualifications

OU qualifications are modular in structure; the credits from this undergraduate module could count towards a certificate of higher education, diploma of higher education, foundation degree or honours degree.

Browse qualifications in related subjects


Module code


  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
Study level
Across the UK, there are two parallel frameworks for higher education qualifications, the Framework for Higher Education Qualifications in England, Northern Ireland and Wales (FHEQ) and the Scottish Credit and Qualifications Framework (SCQF). These define a hierarchy of levels and describe the achievement expected at each level. The information provided shows how OU module levels correspond to these frameworks.
3 10 6
Study method
Distance Learning
Module cost
See Module registration
Entry requirements
See Entry requirements

Student Reviews

This is a fascinating module, but not an easy one. I have managed distinctions in most of my level 2...
Read more

This course is varied and although the books are thin, they are densely packed with facts and data. Block 1...
Read more

Request your prospectus

Explore our subjects and courses

Request your copy now

What you will study

The module examines the development of micro- and nano-scale devices in terms of their engineering and operation. Mechanical, electrical, chemical and biological engineering of these ‘small worlds’ is revolutionising our lives through devices smaller than the eye can see. Aspects of this ‘unseen’ engineering are investigated in the light of scientific principles and the practical constraints they impose. A selection of applications, chosen to illustrate how engineering solutions are achieved on the micro and nano scales, is described.

The printed study materials are divided into three main themes together with a supporting text book as an introduction to the subject of nanotechnology. The module is accompanied by a DVD-ROM.

Structural and inertial systems

The techniques of micro- and nano-fabrication have been successfully applied to a wide range of mechanical, electromechanical and purely structural devices. The first part of this block takes an example of a particular atomic scale mechanism whose exact form is crucial to its performance. Through examining the details of the manufacturing techniques available and how they affect both the composition and the shape of the mechanism, you will discover just how inextricably they are connected. Part two goes a stage further and looks at an inertial sensor, asking the question ‘Why are successful micro- and nano-engineered devices not simply miniature, scaled-down versions of their conventional counterparts? The laws of nature, although universal, make the world at these small scales quite alien to our common experience.

Electronic and optical devices

The success of microelectronics has always been based on a very shallow layer of semiconductor. So progress has always been in the direction of smaller components, packed more closely together, albeit over wider areas. Just before its fiftieth birthday, silicon-based electronics was miniaturised to the point where an electronically captured copy of an optical image could threaten conventional film and photocopier technologies. Part one of this block explores how this came about. The second part reveals how various electrical manipulations of organic molecules provide the means to render such electronic images instantly visible, once again combining fine, shallow structures extending over relatively large areas. The optoelectronic revolution has turned our world inside out.

Working with nature

Nature provides us with a stunning array of highly sophisticated nanoscale ‘machinery’, brought to our attention as we explore ever smaller scales. Nature’s nanomachines tend to be soft, wet and sticky. In part one of this block you will see how these designs are ideally suited to the nanoscale and appreciate how molecules are able to ‘self-assemble’, to produce complex structures from the bottom up. In the second part, practical examples will be used to demonstrate how principles similar to those that operate in nature can be applied, both for constructing nanoscale devices and also for interacting with biological systems at the molecular level.

If you are considering progressing to The engineering project (T452), this is one of the OU level 3 modules on which you could base your project topic. Normally, you should have completed one of these OU level 3 modules (or be currently studying one) before registering for the project module.

Teaching and assessment

Support from your tutor

You will have a tutor who will help with the study material and mark and comment on your written work, and whom you can ask for advice and guidance. We may also be able to offer group tutorials or day-schools that you are encouraged, but not obliged, to attend. Where the tutorials are held will depend on the distribution of students taking the module.

Contact us if you want to know more about study with The Open University before you register.


The assessment details for this module can be found in the facts box above.

You will be expected to submit your tutor-marked assignments (TMAs) online through the eTMA system unless there are some difficulties which prevent you from doing so. In these circumstances, you must negotiate with your tutor to get their agreement to submit your assignment on paper.

Future availability

Engineering small worlds: micro and nano technologies (T356) starts once a year – in October. This page describes the module that will start in October 2019. We expect it to start for the last time in October 2020. A new module, Nanoscale engineering (T366), is planned to start for the first time in October 2021.


As a student of The Open University, you should be aware of the content of the academic regulations which are available on our Student Policies and Regulations website.

    Course work includes:

    4 Tutor-marked assignments (TMAs)
    No residential school

    Entry requirements

    This module has no formal entry requirements.

    However, you must be familiar with the following:

    • fundamental concepts of mechanics, dynamics, materials, chemistry and electricity
    • algebraic expressions, calculus notation and mathematical models in general
    • Windows and suitable word-processing and spreadsheet software.

    This is an OU level 3 module that builds on study skills and subject knowledge acquired from OU level 1 and 2 modules. It’s intended for students who have recent experience of higher education in a related subject.

    If you’re not sure you’re ready, talk to an adviser.

    Preparatory work

    The following OU level 2 modules would be good preparation:

    • Core Engineering A (T271) and Core engineering B (T272), or
    • Engineering: mechanics, materials, design (T207) – discontinued, or
    • Physics: from classical to quantum (S217), or
    • The physical world (S207) – discontinued


    • Engineering: mathematics, modelling, applications (T194), or
    • Essential mathematics 1 (MST124), or
    • Using mathematics (MST121) – discontinued.


    Start End England fee Register
    05 Oct 2019 Jun 2020 £1506.00

    Registration closes 12/09/19 (places subject to availability)

    This module is expected to start for the last time in October 2020.

    Additional Costs

    Study costs

    There may be extra costs on top of the tuition fee, such as a computer, travel to tutorials, set books and internet access.

    If you're on a low income you might be eligible for help with some of these costs after your module has started.

    Ways to pay for this module

    Open University Student Budget Account

    The Open University Student Budget Accounts Ltd (OUSBA) offers a convenient 'pay as you go' option to pay your OU fees, which is a secure, quick and easy way to pay. Please note that The Open University works exclusively with OUSBA and is not able to offer you credit facilities from any other provider. All credit is subject to status and proof that you can afford the repayments.

    You pay the OU through OUSBA in one of the following ways:

    • Register now, pay later – OUSBA pays your module fee direct to the OU. You then repay OUSBA interest-free and in full just before your module starts. 0% APR representative. This option could give you the extra time you may need to secure the funding to repay OUSBA.
    • Pay by instalments – OUSBA calculates your monthly fee and number of instalments based on the cost of the module you are studying. APR 5.1% representative.

    Joint loan applications

    If you feel you would be unable to obtain an OUSBA loan on your own due to credit history or affordability issues, OUSBA offers the option to apply for a joint loan application with a third party. For example, your husband, wife, partner, parent, sibling or friend. In such cases, OUSBA will be required to carry out additional affordability checks separately and/or collectively for both joint applicants who will be jointly and severally liable for loan repayments.

    As additional affordability checks are required when processing joint loan applications, unfortunately, an instant decision cannot be given. On average the processing time for a joint loan application is five working days from receipt of the required documentation.

    Read more about Open University Student Budget Accounts (OUSBA).  

    Employer sponsorship

    Studying with The Open University can boost your employability. OU courses are recognised and respected by employers for their excellence and the commitment they take to complete. They also value the skills that students learn and can apply in the workplace.

    More than one in ten OU students are sponsored by their employer, and over 30,000 employers have used the OU to develop staff so far. If the module you’ve chosen is geared towards your job or developing your career, you could approach your employer to see if they will sponsor you by paying some or all of the fees. 

    • Your employer just needs to complete a simple form to confirm how much they will be paying and we will invoice them.
    • You won’t need to get your employer to complete the form until after you’ve chosen your module.  

    Credit/debit card

    You can pay part or all of your tuition fees upfront with a debit or credit card when you register for each module. 

    We accept American Express, Mastercard, Visa and Visa Electron. 

    Mixed payments

    We know that sometimes you may want to combine payment options. For example, you may wish to pay part of your tuition fee with a debit card and pay the remainder in instalments through an Open University Student Budget Account (OUSBA).

    For more information about combining payment options, speak to an adviser or book a call back at a time convenient to you.

    Please note: your permanent address/domicile will affect your fee status and therefore the fees you are charged and any financial support available to you. The fees and funding information provided here is valid for modules starting before 31 July 2020. Fees normally increase annually in line with inflation and the University's strategic approach to fees. 

    This information was provided on 16/07/2019.

    What's included

    Module books, other printed materials, audio programmes, DVD-ROMs, online forums, website.

    Computing requirements

    A computing device with a browser and broadband internet access is required for this module. Any modern browser will be suitable for most computer activities. Functionality may be limited on mobile devices.

    Any additional software will be provided, or is generally freely available. However, some activities may have more specific requirements. For this reason, you will need to be able to install and run additional software on a device that meets the requirements below.

    • A desktop or laptop computer with Windows 7 or higher
    • The screen must have a resolution of at least 1024 pixels horizontally and 768 pixels vertically.

    To join in the spoken conversation in our online rooms we recommend a headset (headphones or earphones with an integrated microphone).

    Our Skills for OU study website has further information including computing skills for study, computer security, acquiring a computer and Microsoft software offers for students.

    If you have a disability

    The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying T356 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

    To find out more about what kind of support and adjustments might be available, contact us or visit our Disability support website.