OPEN UNIVERSITY LIBRARY

Title : Science Course Unit 5

Contributors : M.J. Pentz. G.F. Elliott. A.J. Walton.

Producer: Nat Taylor.

PROGRAMME SEQUENCE LIST

CU \$100/05 (1971). Tape No. 6LT/70124 Project No. 00520/1140 Date Recorded 2-11-70 Form VTR

1ST TX 7-2-71

Seq.	Time	Footage	Sequence List	Sound Cue
1.	1 '27"		Shot of M.J. Pentz with samples of ice, water, and steam. He speculates on the forces that hold matter together and how they might be responsible for changes in state.	
2.	6130"		A.J. Walton illustrates the nature of the bin- ding and repulsive forces which determine the state of matter - the kenetic energy.	
			Walton uses a ball bearing analogue to simulate this on an atomic scale. A tray with the ball bearings on it is vibrated	
	8 155"		more and more rapidly (increase in Kinetic energy) until a state corresponding to the liquid state is reached.	
			White ball bearings are added to illustrate the diffusion property of liquids.	
	10'30"		Diffusion of real liquids is shown in a test tube.	
	Y.		Vibrations of the tray/ball bearing analogue are increased until a gaseous state is simulated.	
3.	12'10"		Diffusion properties of gases demonstrated in a test tube and then with the ball bearing analogue.	
			Velocities of moving molecules are shown on a photograph taken under strobe lighting.	
	14'15"		Walton plots the distribution of ball bearing velocaties on a graph.	
			G.F. Elliott demonstrates the random movement of gaseous molecules using as an analogue an air cushion table and freely moving discs. The movement of the discs simulate Brownian motion.	

\$100/05 (1971)

Page .2....

PROGRAMME SEQUENCE LIST

OPEN UNIVERLITY LIBRARY

Continuation

Seq.	Time	Footage	Sequence List	Sound Cue
3.	18'30"		Shot of microscopic particles in Brownian motion.	
			Elliott performs an experiment to directly measure the distribution of molecular velocities of gases.	
	22 1 35"		Elliott prepares a water syringe analogue and uses it to explain the experiment. He also uses a diagram as an aid.	
	25100!		Elliott performs the experiment. He takes only one reading. He then draws a hypothetical graph to show what the readings ought to have been, had he taken more.	
			Credits.	
	Γ			
				C. S. A. S. C. S. C. S.
	No. 1			