OPEN UNIVERSITY LIBRARY

Title : Plastics. (Giant molecules)

Contributors : M.J. Pentz L.J. Haynes R.A. Hill

PROGRAMME SEQUENCE LIST

CU \$100/13 Tape No. 6LT/70119 Project No. 00520/1113 Date Recorded 29.10.70

Form VTR

547.843

1st TX 4.4.71.

	Produ	cer:Nat T	•	
Seq.	Time	Footage	Sequence List	Sound Cue
1	51"		Pentz introduces the unit.	then Prof. Haynes
2	1 153"		Haynes introduces polymers which he divides into two groups:1. addition polymers, and 2. condensation polymers. Haynes discusses addition polymers with the aid of a molecular model.	The modern chemical
	2126"		Haynes briefly looks at some monomers which give rise to polymers. The molecular structure is shown in a diagram.	
	3'10"		Haynes adds an initiator to a test tube containing dichlorostycene (liquid). He places the test tube in a water bath at 90°C.	Here is Dr. Hill
3	3'43"		Hill describes the substances which make up the initiators for addition polymerisation. Each has a very weak covalent bond.	We could have
	L140"		Hill with the aid of a diagram explains how an initiator like a peroxide works. He shows that free radicals with one free electron each are formed.	
	7'30"		A monomer, Carbon-Carbon, double bond molecule shown on animated diagram. The diagram shows how polymers are formed with the introduction of a free radical. A long chain polymer mole- cule results as there is always an unpaired electron at the end of the chain. Only introduction of another free radical will produce a stable polymer molecule.	
	8103"		Hill briefly discusses the shape of polymer molecules.	5000 monomer units
				It seems to have

S100/13 Page .2....

OPEN UNIVERLITY LIBRARY

PROGRAMME SEQUENCE LIST

Contin	instion
00110111	uaurini

Seq.	Time	Footage	Sequence List	Sound Cue
4	<u>8'45"</u> 10'08'		Haynes removes the test tube of dichlorostypene and initiator from the bath. The dichlorostypene has polymerized. Haynes with a string (as a model) shows what a 5000 chain polymer would look like.	you about these
	12153"		Hill takes up condensation polymers. As an example he uses amino acids. The amide bond and a polyamide (protein) are shown on a diagram. The polyamide nylon is shown on a diagram and <u>discu</u> ssed.	Well, you've already
5			Haynes gives a demonstration of the formation of a nylon polymer:	
	14,144,		A diamine is poured into a beaker containing a di-acid chloride. The two liquids do not mix. Nylon is polymerised at their interface. The nylon is pulled out in a long stand and wound on a coil.	forms quite readily.
			Haynes discusses the relationship between the physical properties of a polymer molecule and its chemical structure. Nylon is melted over a burner. A fibre is drawn from the molten nylon and to demonstrate its strength, a pair of scissors are suspended from	So far we've 547,8432235
6	16'01"	1	it.	
	16:12"		Haynes uses several strands of beads as analogues for nylon molecules to illustrate why nylon is so strong. Haynes shows 2 varieties of propylene - stiff	547.8430184 1
	20103	n	and solt. Then, with molecular models of each variety, he shows why the physical properties differ.	modern technical ingenuity
7	22 ' 14		Excerpts from BP chemical film "The world of PVC", showing: A manual polymerisation unit. An automated polymerisation unit. Pigmentation of plastics in the automated unit. Manufacture of plastic bags, polyurathane foam, plastic a loves, pipes, plastic sheets.	668.49 effectively as possible

S100/13

Page . 3....

1.

OPEN UNIVERSITY LIBRARY

PROGRAMME SEQUENCE LIST

				Concinuación
Seq.	Time	Footage	Sequence List	Sound Cue
8	24,00"		Pentz discusses some of the uses of plastics and their advantages. As exampleshe shows: A Video tape An Audio cassette The home-kit microscope. Pentz tells how plastics made the home kit microscope possible.	Well, I think
	24'19"		Pentz briefly takes up the problem of disposal of unwanted plastic products.	of our thoughtlessness
9	24'33"		Credits.	