CU S100/25

Title: Science course unit 25. (Clock title: Continents)

Producer: Nat Taylor

Contributors: M.J. Pentz (introduction)

I.G. Gass

Peter J. Smith

Tape No. 6LT/10004

Project No. 00520/1125

Date Recorded 3.9.70

Form VTR

538.72 551.46084

1st TX: 18.7.1971

Seq.	Time	Footage	Sequence List	Sound Cue			
			Pentz introduces the unit. He explains that it will examine the magnetic patterns of the ocean floor.				
	•		Pentz explains the method used to take magnetic anomaly readings on the ocean floor.				
	1'01"		Shots of an oceanograph research vessel at sea.				
1.			Shots of magnetometer being prepared on board ship and dropped overboard inside a drogue.	538.78 538.79028			
	1'48"		Underwater shots of drogue being towed behind the ship Shots of magnetometer readings being recorded.	here is Dr. Smith			
	_2'44"		P.J. Smith with a chart of the west coast of Canada and the U.S. The chart shows the magnetic anomalies on the ocean floor in this area.	Well, one of the 551.4653 Smith, Peter J.			
2.	4'10"		Smith with a chart of the Reykjanes Ridge area of the Atlantic, south of Iceland. The chart shows the magnetic anomalies on the ocean floor. Smith discusses the pattern of the anomalies.	551.46131			
	51 35"		Smith with his dynamic model of an ocean ridge which shows how the magnetic anomalies occur. He explains then demonstrates the process with the model.	551.460840184			
	6125"		Smith explains how ocean floor rocks can be dated and how the ocean floor spreading rate can be calculated.	sea floor spreading			
				We have here			

	OPEN	TISHEVINU	GRAMME SEQUENCE LIST Continuation	
Seq.	Time	Footage	Sequence List	Sound Cue
3.	7'48"		I. Gass with a chart of the north and south Atlantic oceans showing the Mid-Atlantic ridge. He points out differences in distance from ridge to land masses on either side. These indicate a variety of spreading rates at different, points of the ocean floor.	Gass, Ian 551,4613
	_8'14"		I. Gass points out major breaks in the Mid-Atlantic ridge, (transform faults).	
	3'46"		I. Gass uses a transform fault model to illustrate what happens at these breaks in the ridge.	551.87
	11'05"		Animated diagram of 3 sections of ridge linked by 2 transform faults showing areas of seismic activity.	551.870184
			Gass with globe on which areas of strong seismic activity are marked.	so let's go from
	14'44"		He points out areas of no seismic activity and covers these with seismic plates.	Gass, Ian
			Gass speculates on the results of two seismic plates coming together.	551.4
4.	•		He takes two model plates and pushes them together to simulate a meeting of seismic plates: On first attempt plates meet, buckle and rise.	551.130184
	16'21"		On second attempt plates meet, buckle and one dives beneath the other.	
			Animated diagram of earth's crust. East Pacific Rise, Mid-Atlantic Ridge, South America and Africa are shown. The diagram shows the possible result of the meeting of the East Pacific Rise and the continental mass of South America.	551.4098
	20'21"		In this case the East Pacific Rise plate dives beneath the continental plate creating an area of strong earthquake and volcanic activity.	under the other

PROGRAMME SEQUENCE LIST

	And the last	Continuation	
Time	Footage	Sequence List	Sound Cue
		I. Gass with a cut-away diagram of the earth. The diagram shows possible convective currents in the mantle which would be responsible for continental plate movement. Gass discusses the drawbacks to this theory.	Now, this is Gass, Ian 551.12
22'08'		the diagram, in which the convective area is confined to the low velocity layer.	
22 1 47 1		Shots of a laboratory simulation of convective currents within the earth. Convective plumes are seen to rise.	551.120184
22' 58"		Gass sums up the unit.	
23'15"		Credits.	
	22'47"	22'08'	I. Gass with a cut-away diagram of the earth. The diagram shows possible convective currents in the mantle which would be responsible for continental plate movement. Gass discusses the drawbacks to this theory. He gives another theory, also shown in the diagram, in which the convective area is confined to the low velocity layer. Shots of a laboratory simulation of convective currents within the earth. Convective plumes are seen to rise. Gass sums up the unit. Credits.