S100-10

OPEN UNIVERSITY LIBRARY

1971

NOT TO BE TAKEN FROM THE LIE

ALEXANDRA PALACE - STUDIO A

CAMERA SCRIPT

RECORDING NO: VTM/6LT/0.U.10056

MONDAY 20TH JULY 1970

PROJECT NO: 00520/1110

OPEN UNIVERSITY SCIENCE COURSE UNIT 10

EXECUTIVE PRODUCER NAT TAYLOR
DIRECTOR BARRIE WHATLEY
ASSISTANT SUSAN UNDERWOOD
DESIGNER PAUL MUNTING
FLOOR MANAGER PETER CHARLTON
T.M PETER MURRAY
SOUND SUPERVISOR GRAHAM BEEBEE
VISION MIXER RHODA CARSS
CAMERA CREW A.P.CREW
SEN.CAMERAMAN GORDON BLOCKLEY
CO-ORDINATING PRODUCER JAMES iscolor
00000

TAKING PAR_

Professor M. J. Pentz Dr. R. R. Hill --00000--

CAMERA	REHEARSAL	 	1030-1300
LUNCH .	• • • • • • • • •	 	1300-1400
CAMERA	REHEARSAL	 	1400-1545
LINE-UI	· ,	 	1545-1615
RECORDI	NG	 	1615-1715

TECHNICAL REQUIREMENTS

4 Cameras:

- 2 Pedestals with zooms
- 2 Pedestals with turrets

2 Booms

TELEJECTOR SLIDES

- 1. Science: A Foundation Course
- 2. Course Unit 10
- 3. Introduced by Professor Michael Pentz
- 4. (+) Glucose
- 5. (-) Glucose
- 6. The Speakers were: Professor M.J. Pentz Dr. R.R.Hill
- 7. Production by Barrie Whatley Executive Producer Nat Taylor
- 8. A Production for the Open University, BBC tv

CAPTIONS

No.	Shot	Description	<u>Camera</u>
1 7	7,	Section of Periodic Table	4
	11		4
2.	9	BF ₃	4
3.	13	BcC1 ₂	4
4.	15	PF ₅ SF ₆	4
5.	17	PF ₅	4
6.	19	${}^{ m SF}_{ m 6}$	4
7.	27	(+) Glucose	4
8.	3 7	O.U. Symbol	4

F/U		
1.	4 B VT CLOCK	
2.	TJ.1 Science: A Foundation Course	
3.	TJ.2 Course Unit 10	
4.	Introduced by Professor Michael Pentz	<u> ∕₩00M 1</u>
5.	3 A MS Pentz & Table	PENTZ: Introduce Programme and Dr. Hill.
6.	2 A MS Hill INTERCUTTING WITH	HILL: Talks about structure of covalent compounds using balloons.

1 B CUs Models
3 A

7.	4 A	HILL (CONT'D):
	Caption 1: Section of periodic table	
8.	2 A	
	MS HILL	
	INTERCUTTING WITH	
	1 B) CUs Models A)	
	END ON	
	SPLIT SCREEN WITH	
9.	4 A	
	Caption 2: BF3	
10.	2 A	
	MS HILL	
	INTERCUTTING WITH	
	1 B)	
) CUs Models 3 A)	
	END ON	
	SPLIT SCREEN WITH	
11.	<u>4 A</u>	
	Caption 1: Section of Periodic Ta _h le (REPEAT)	

(2 & Intercutting next)

(ON SPLIT SCREEN) (4 and ...

HILL (CONT'D):

12. <u>2 A</u>

MS HILL

INTERCUTTING WITH

1 B)
CUs Models
A)

END ON

SPLIT SCREEN

13. 4 A
Caption 3: BcC1₂

14. <u>2 A</u>

MS Hill

INTERCUTTING WITH

1 B)
) CUs Models
3 A)

ENDS ON

SPLIT SCREEN WITH

15. 4 A

Caption 4: PF₅SF₆

(2 AND Intercutting next)

(SPLIT SCREEN) (4 and)

HILL (CONT'D):

16. 2 A

MS HILL

INTERCUTTING WITH

1 B)
CUs Models
A)

ENDS ON

SPLIT SCREEN WITH

17. <u>4</u> A Caption 5: PF₅

18. <u>2 A</u>
MS HILL

INTERCUTTING WITH

- 1 B)
 CUs Models
 A)
- ENDS ON .3. A
- 19. <u>4 A</u>
 Caption 6: SF₆
 - 20. 3 A MCU HILL

/1 TO A/ 2 TO B HILL: Winds up section with summary.

(2 NEXT)

(Shot 20 on 3)

BOOM 1/

21. 2 B

MS PENTZ & BLOCK

/3 TO B/

PENTZ: No superimposability
of L & R hands.

Tetrahedra -

INTERCUTTING WITH

1 A) CUs

END ON 2

Refers to complex molecule

22. 1 A

MS Model Molecule

23. 2 B

MS Pents - Pan

MS Fentz - Pan Right and Track when Pentz M moves. Need to have simpler method to test chirality.

Moves to cup demonstration7

24. 1 A

CU of Cups and mirror image /2 TO D/

ZOOM OUT to MS Pentz and follow him to hat stand

BOOM 2/

25. <u>2</u> D

MCU HILL

HILL: Importance of chirality at molecular level.

/I TO C/

Holds up glucose framework. Shows plane of symmetry.

(Shot	25	on	2)
-------	----	----	----

26. <u>1 C</u>

HILL (CONT'D):

CU Glucose Molecule

Shows glucose molecule

SPLIT SCREEN WITH

27. 4 A

Caption 7: (+)glucose

o.o.v.: places (-) glucose in mirror image position.

28. 1 C

Zoom out to show both molecules

HILL: Refers to mirror image molecule.

29. <u>2</u> D

MS Hill & Table

Introduces polarimeter.

30. 1 C

CUs of parts of polarimeter

Assembles polarimeter.

31. <u>2</u> D

MS Hill &
Polarimeter

Places 1) water in sample bath

2) glucose solution.

INTERCUTTING WITH

2 B) CUs of polarimeter window & dial

(31 on 2)

32. 1 C

CU of RE Glucose Model

S/I

TJ.4

(+) Glucose

T/O Slide

33. 2 D

MS Hill & Models

34. 1 C

CU LH Glucose Model

S/I

TJ.5

(-) Glucose

T/O Slide

(2 NEXT)

HILL (CONT'D):

Because of the rotation this natural form of glucose is called (+) Glucose.

HILL: The mirror imate structure does not occur in nature and although it has been made in laboratories, it is a rarity, and and we were unable to obtain any. However, as could be predicted from present knowledge of chiral molecules the mirror image of (+) Glucose rotates p.p. light an equal amount, but in the negative direction. Thus this one -

is called

(-) Glucose.

-7-

(Shot 34 on 1)

ZOOM OUT TO GIVE CU of both molecules HILL (CONT'D): The pair are called optical isomers because of this difference in interaction with plane polarised light.

35. 2 D MS Hill Why does only one form of a chiral compound usually occur in living organisms?

Chiral nature of enzymes.

Hand/Bag) Demonstration. Hand/Glove)

crew/wwod.

Bolt/nut.

36. MS Pentz & Coffee

Table.

INTERCUTTING WITH

teaspoonful glucose & template.

END ON: 2 D CU model

S/I

2 D) Cus: molecular model

37.

OU Symbol

T/0.2

(CLOSING TJS NEXT)

Winds up.

PENTZ: How was the first optical isomer formed and why was one preferred?

-9-

(37 on 4) S/I TJ.6 38. The speakers were.... T/O slide . S/I TJ.7 39. Production by..... OCE. Slide S/I 40. TJ.8 A Production for....

FADE SOUND & VISION

SCU 15.7.70