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Studio V/0

DAVID BRANNAN:

Suppose you wanted to sketch the curve
which has this equation-

In this interval

An obvious first step is to look at the
hehaviour of twe simpler curves.

Here's y = cog 3x
call that F{fu)

and tere's y = sin x—e to the cos x
call that gix)

It’s clear that f and g are continuous, at
least in this interval. But does this
mean that f/g9, the quotient function
yvyou*re looking for, is also continuous?

Well, if theres going to be a problem, it
will be here, at % = 11/2 where hoth the
riumerater and the denominator are zero.

S0, what does the guotient function look
like for points ney to 11/27

To the right of 11/2 both numberator and
denominator are positive.

To the left of 11/2 f{(x3 and g(x> are koath
negative and so their guotient will be
positive there as well-. But what happens
at x = 11/2 itself?

Since g{x) disappeas theve, vou might
expect that f/¢g has a vertical asymptote.
Well, let*lets plot some values for f/g-

The only point we can’t evaluate it at is
x = 11/2, of course, but it looks from the
two sides of the graph as if they should
meet there with the value 3.
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D. Brannan (continued)

So # = 11/2 isn't a vertical asymptote and
the reason for that is hecause the
numerator vanishes as well as the
dencminator. But we do seem to have a
limit.

Are we able to say whether this limit does
exigt?

Aand then if it does, does it equal 37

tet me ask those guestions more genevally.
If you have two continuous functions f and
g which are both zeroc at the same point c,
what can you say about their ratio as x
tends to ¢? Does it exist? Can you
evaluate it?

kell by the end of the programme you'll
have a theorem, called L'Hopital'’s Rule
after the 17th Century Mathematician,
Marguis Guillaume de L'Hopital - which
answers these guestions and I think it's
an amazing result!

What you do is take the derivatives of
numerator and denominator and then
consider the limit of their ratio. And
unndey certain conditions which we'll add
in later the theorem says that the
original limit does exist and it eguals
this as long as this exists.

Well, that's L*Hopital?s Rule and if vyou
use i%¥ on the function you've already met
it does give the value 3. 1'll ke showing
you that later on, along with what happens
when yvou try it on this other function.

Both numerator and denaominator vanish at
zero this time. But if you're going to
use 1l1'Hopital'*s Rule here you'll find you
have to he really rather crafty.

mOY NELSON:

Well, there's & lot to ke dene hefore you



R. Nelson (continued)

can he satisfied that the FEule is correct.
MCU 4 Quadrants We are going to go through separate steps
in order to prove 1'Hopital’s Rule. We
kegin withFolle?s Theorem which you've
already met in the Unit and although that
doesn’t seem to have much to do with
proving l'Hopital’s Rule you'll find that
we can build on that to give other
theorems that can be used.

2/1 to top left Quad.

CAPTION 1 So let me remind you what Rolle said. For

a function f, differentiable in the open
interval a,b we suppose that f{a)=f{h)
Folle’s theorem then says that there is
some point k inside a,b for which
fr'(k)=0s~ the tangent to the curve at k is
horizontal-. In other words, the tangent
is parallel to the chord joining the end
points of the curve.

CU GRAPH

Editec on graphic

CU Graph Our next step is to look at an extension
of Rolle’s theorem called the MWT to cover
the general case whevre f(a) is nat
necessarily egqual to f(b).

In this case it's not a horizontal tangent
we’'re interested in butwe’re still looking
for a point for which the tangent to the
curve is parallel to this chord.

Roy and Board In fact, it*s easy enough to find such a
point k, if we look at the situation
geometrically. We start with a line
parallel to the cherd and then we move it
vertically keeping it always parallel to
the chord intevsecting the curve in two
points until eventually it will meet the

" curve at one point.

Roy and Board 3 It is then a tangent and the point where
it touches the curve gives us the point k
we seek.

In other words, it is the point of the curve
for which this vertical distance iz a
. maximum. So how do we find that maximum?
Widen to follow walk. Let’s look at it in a different way.
Over here i've reproduced the axes with
. the same interval. At each point % of the
CU Diagrams interval, let h{(x) denote just the
distance above the chord te the curve.
NMow the point we are looking for is one
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R. Nelson (continued)

for which h(x) is a maximum. Iw other
words we are trying te find a point where
h dashed ic¢ zero. But of course, hefore
we can differentiate, we need to know what
the function h{x> is.

Well, in terms of f(u),we have h({x)=f{n) -
this distance (x fTan alpha plus 1>. This
is an elementary vresult, which is just ,
this is alpha, this is 1 the intercept on
the axis givingus the height up to the
chord.

So now we can differentiate to get: h'(x)}
= f*{ury~tan alpha. Now, remember what we
are looking for is a point k for which h?
{x) = 0 that means we trequire f'{(k)> = tan
alpha- In other words the tangent at k
has the same slope as the chord.

Of course, we haven't proved anything yet!
We have not shown that such apocint k
actually exists. But we seem to be on the
right tracks: if the point k deoes exist,
then we ghall have found a point at which
h{x) is a maximum.

So what do we do next?

Yau see to know that k exists we don't
actually need to look for maxima, just to
know that h*({x) takes a zeroc value
somewhere- Can we prove it does? Yes, we
can because h satisfies Rolle’s Conditions
cantinwity, differentiability and also

we have h{(a) and h{(h) are hoth zero. So
h?' disappears somewhere inside the
interval.

And since h'(k)»=0 thevefore f'(k)-tan
alpha=0 so f*{k)> does = tan alpha. Now
this really is what the MVYT says. And in
fact we can express the chord slope in
another way.

The tangent of this angle is of course the
difference in vertical heights divided by
this horizontal distance. We've relied
on the geometry to prove this result for
this particular curve but if you look in
the unit you?ll find & rigourous proof
applying to any suitabkle curve. Well,
that's two theorems dealt with, we’re half
way to the proof of L’'’Hopital’s Rule, but



End Animation 2

Diagram

David and Board 4

Equation

Walk to Board 5

Bottom Board 5.

R. Nelson {(continued)

we still don’t seem to he very close to
it. It's the next theorem that brings us
& lot closer and we are now ahbhle to tackle
that. We need to look at the parametric
plane.

Because it you logk at the equivalent

thecrem for that plane you get & ratio of
two functions-.

DAVID BEANNAN:

In the parametyric plane, curves have their
¥ and y coordinates described by
independent function, f{t) and g(td>. 1In
other words, the curves resulting from
rlotting points for different values of t.

So you cav think of the curve as
representing the path of a particle going
along the curve from one point to amother.

You can think of £t as time-

lLet's call the beginning t=a and the other
end t = b. It?'s the same sort of theorem
againe.

Here's a chord joining the end points.
Cnce again there is going to be at least
one point on the curve, where a tangent to
the curve is a parallel to this chord.
Call such & point t=k. What we’ve got
here geometrically is another MVT.The
Cauchy MVT gives a version of the MUT for
curves given in parametric form.

It says there exists a point k such that
the tangent slaope equals this expression.

How would you work out the slope of a
parametric tangent? It's the limit of
chords through the point t=k in this case
~ the slope of the chord is this height
divided by this base —~ s0 you can work out
the slope of the tangent as this completed
limit.

It's certainly true that I can divide all
the taope expression by h if I do the same
to the denominator.



Bottom Board 1

Diagram and Roy

D. Brannan (continued)

Which can of couvse he expressed as a
gquotient of two limits and so now the
numerator is our familiar definition of
the derivative f'<{k), and similarly the
denominator 1s g?*(k).

So the tangent slope at k is f'{(k)/g'(k).
This is what's needed to state the Cauchy
MUT fully.

I've given you the idea of the proof
geometrically. The rigourous proof is in
the text as it's too algehraic to do hevre.

hut this is the formal result . . .

and at least this hit is reminiscent of
L¥Hopital's Rule.

BOY NELSON!

But how does zuch a MV theorem for
parametric curves get us closer te solving
problems of the general type we started
the proegramme with. The condition was
that f and g should vanish together at
some point, c-

Well, in the parametric plane, f and g
vanish at the erigin. Call that the point
t=c. So we have only to consider the
special case aof parametric curves which
actually pass through the origin.

Any result which we obtain in this case
can be used to tackle our original
proklems.

So whatever our curve is, it must go
through the origin, and then on, mayhe
semething like this. Suppose that the
heginmning of the curve is now here.

S0 what can we say about it?

A curve passing through the origin at t=c.
If you think of t as time, the part of the
curve from a to ¢ corvesponds to points
earlier than ¢. We contivue to follow the
curve through points later than c, asz far
as the point b.
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R. Nelson (continued)

Let’s look at that part of the curve first
and see what we can say about the chard
Joining the two point ¢ and b-.

We can apply Cauch?s MVT to find a point
t=k in the interwval c,b where the tangent
is parallel to the chord.

We then have f'(k) = f{h)—F<{c)
gk g{hir—ygc?
just as befare.

But now of course, we are subtracting
f(crandg{ecri~baoth of which are zero.
S0 what we get is
frikrI=f(h)

g'(kdY aikd

Now imagine that b moves closer and closer
to ¢« Then the chord itself will move
closer toe the tangent at the origin and
aleo as h decreases to, the point k is
pushed closer and closer to c. In fact, b
and k tend to ¢+, together.

Thig egquality always holds threughout the
limiting process as k and b tends to c+.
Now if we suppose that this limit

f*Ck)

k—c+g* (k)

exists, it must follow that limit

ik

be+géh) also exists and in fact they?ll
have the same value.

Notice that bk and k have now assumed the

same role, that of a variahkle approaching

c from the right. So we might as well

replace each of them by the symhol

"£?.This limit is then the limit f£'(t>
te-c+g?(t)

and this limit hecomes the limit

fct)
t—c+g(t)

In fact, if this limit as t—-c¢ is known to

exist then both these two one sided limits
are known to exist and they must be equal

to it.

Has this proved L’Hopital’s Rule? It
looks very promising. But den't forget
these are all 'right' limits. Well, vyou
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R. Nelson {continued)

use exactly the same argument toc get the
corresponding result with *left? limits.

nce again if we know that 1limit £'(t)

tcogrced
exists then these left hand limits exist
and are equal to it.

S0 what does that give us? Let's bring
the two separate results together and see.
If we know that this limit at the top here
exists, then we deduce that all of the
grie—sided limits exist and they are all
equal to the limit at the tops; so they are
all identical. In particular, since these
two one sided limits exist and are egqual
then we know that limit f(t) exists.

t ¢ gty
and is equal to the common value.

Let me rearrange this a little to give the
resitlt we promised you at the start of the
programme .

So that's |'Hopital's Rule. Usually the
result is stated in terms gof ¥ rather than
ta

If the functions are differentiable in an
cpeninterval then the rule holds at

any point ¢, in that interval, at which
both functions wvanish

DAVID BRANNAN:

Well we can now deal with the first of our
two praoblems. The numerator and
denominator hoth wvanish at x=11/2. So
L'Hopital says that the limit is this.

The limit is x tends to 1172 of this "the
derivatives of sin x-e to the cos =" so
long as this limit exists. And because
the numerator and denominator are hoth
continuous at 11/2 and that's 371 or 3.
Well that was very gquick kut as I said the
second problem is more tricky and I'm
going to solve that at the end of the
programme. But first let’s have a guick
resume of how we derived L?Hopital?s Rule,
followed by a different way of looking at
what the Rule says.
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D. Brannan (continued)

We've had four theorems.
Let's remind ourselves of each of them.

First of all Roy took Folle's Theorem
which said that if f{a) and f{hk) =0 then
there must ke a point inside the interval
a,h with a horizontal tangent.

Then Eit demonstrated the Mean Yalue
Theorem which gemneralises Rolle: where
f{ay doesn’t necessarily = f{(b). There is
still & point - k in the interval ~ at
which a tamgent must be parallel to the
chord.

But those theorems were for functions of
the type y=f{x). And here’s the next two.

This third step I took brought us
immediately closer to quotients by looking
at the Mean VYalue Theorem for curves diven
in parametric form.

Then Roy from looking at the special case
when the parametric curve passed through
the origin was able to prove L'Hopital
Rule. That states that the limit of our
ratio f/g is egual to the limit of the
ratio of the derivatives 'if that exists'.
Those are the four theorems in the
programme and following the same idea of
lcoking at things geometrically let's
briefly have another look at Problem 1.

Here are f and g again this time with the
tangents drawn in at c=11/2. 1If you look
close to 11/2 yeuwu find that the tangents
closely approximate the curves and because
these triangles have the same base, you
find that the ratio of f/g is more or less
the same as the ration f?

g!
and that looks as though it's 3/1.

Well of course it was the geometrical
picture which guided mathematiciang like
L*Hopital.

MUSIC

It would be intriguing to hbe able to look
over L'Hopital's shoulder to see the way
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D. Brannan (continued)

rules such as this were ?proved’ in the
17th Century.

MUSIC

ROY NE|.SON:

Imagine that I have stepped into
L*Heopital’s shoes for & moment. «
prohably it all begarn with something
sketched out on the back of an envelope.

He would have started with something like
this: something like this: something he
already knew. Now of course his notation
would have bheen different from ours, but
in essence it wonld say the same thing
that the limit of this ratio = f'(c) and
the limit of this ratio = g?*(c). What he
did next was to change these limits into
approximationg-

So, he now has approximations to the
slopes of the tangents at the point c.

It looks very tempting to divide these,
one hy the other, so get rid of the
{x—c)'s to get this approximate value for
the ratio and then because f(c) and g{cd
are both zera, he surmised that going back
to the limit and get the limit of
f/g=F*/g' at the point c.

That was more or less how L'Hopital
arrived at his rule. Back in the 20th
Century it's known that arguments like
this can bhreak down. L*Hopital was lucky.
His conclusion i1s correct even if his
method of proof leaves samething to be
desired.

DAVID BRANNAN:

Welil, L'Hopital?s rule helped us to
evaluate the limit of Prohlem 1§ can it
help us here too? If this is our f and
this our g we find both vanish at x=0.
But, we know what to do, L'Hopital to the
rescue.

Surely all we need to do is find the limit
f' and evaluate it, that’s this
gl
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Cloud 2 but evaluating f? gives us an undefined

g!
limit again. So are we now stuck?

In fact we aren’t. VYou see we can apply
L'Hopital more than once. This is the
limit of second derivatives and that is
defined at »=0 to bhe 2/1.

So this limit exists and is egqual to 2.
You see it's guite acceptable to apply
L'Hopital’s Rule seveiral times if each
time vou apply it you find the new
quotient also has a numeratoer and
denominator vanishing together. And if
vau finally reach & ratio that does have a
limit vou can argue backwards, as here, if

the limit of 77 exists and = 2 then
gll
limit f &lso exists and = 2
G
And the limit of £, our original quotient
9

also exists and it equals 2 as well.
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