7321,9

THE OPEN UNIVERSITY

TELECOMMUNICATION SYSTEMS

A THIRD IEVEL TECHFOLOGY COURSE

T. $321 / 9$

"Telephone Switching 2"

SPEAKERS
Malcolm Hamer Gaby Smol

Sub-Title:

"Telephone Switching 2"

W / T

MALCOLM FAMER: This is a manual telephone exchange in which calis are connected by operators using a system or plugs and sockets. In the first part of this programme were going to look at kow this manual excharge works and to see what parallels can be gward between the principles of operation of this exchange and those of an autonatic exchange.

This is one of a pair of telephones which we brouglit over to this position on the manuel board to demonstate the ovejations involved in setting up a call between two telephones.

I'm going to go through all the operation involved staring with the callev liftins the handset of the calling velephone.
genexates a cell request signal which is sent to the Exchange and is detected in the line unit and this is signalled to the operator by a lamp being lit above a jack socket which corresponds to that telephone.

When the operator sees this she knows that a call is required so she goes to the supervisnry units and seleots a free une there are sixteon. I will use No. G the operator takes a plus from the supervisory unit and inserts this into the socket corresponding to the cailing line. The operator then throws a key into the 'speak' position and this equablishes a speech path between the calling telephone and hex nead set whin she wears all the time, so the caller is then bole to ask for tho called linc he wonts. Jets suppose that the caller has asked for 378 , that's the number of this cher telephone. The operator takes the second plug corresponding to that supervisury rnit axd goes to this figla of jack sockets and selects 378. The noxt thang she does is to test whether or not that telepione is busy, because it may have been connected to a, on arother
call by one of the other cperetors and to do this she touches the tip of the plug on the ring. If she hears a click in her headset this means that the telephone is busy, there is no click in this case so the telephons is free. She can inseri the plug. The next overation is to ring the call telephons. To do this the operator throws this key into the ring position.

When the called user answers his telephonc the spuoch path is then conneoted and the operatons job for that part of the call is ever. At the enc 0 . the call when the users repiace thaix handsets clear signais are sent to the cxchange sad these are dotected in the supervisory unit, so when the callad user: replacem his handset e dear signal is sent to tre exchange and is detected
in tixe supervisory unit and this is
indioated to the operator b_{j} this lanp
Ifthting. And similarly whon the calling user replace, his handiset the clear
signal is detected and indicated to the operator by a second amp i土ghtine. Wen
the operato sees both these lamps 3 it
she wows that the adz is ovor, so she can remove the two jecks.

And this supervisory unit is then free for use on another call.

Abstract

Well those are the opGrations involved, before we look at the exchange in more detail let's see an operator doing all that at full speea.

Operator: "Number please" Malcolm: "45 Dr. Jolly Please" Uporator: "Extensioi 46 Dr . Jolly I'Il connect you"
Tony Jolle: "Tony Jolly"
Malcolm: "Just testing thenk you"

Well although this exchunge looks vexjr
different to an automatic exchange j.t is leally functionslly very similan and to show you this I am going to Jock at the various functions involved and relate these to the sort of functions in en axtomatic exchange you have veon used to. An exchange can be thought of as consisting of three basic components. Signelling, control and switching. The signalling parts of the exchange reccive signens from a user or from enothen exchango and puss these to the control. axb aiso receive signals from the control
instructing signals to be sent out to a user or to another exchange. The contro? acting on these, the instructions received via signalling causes switching operations to take place in the switchine network.

Well in this Manual Exchange here we hav got just those same functions so lets look at sigualling to start with. There ace three pieces or signalling equipment. First behind here there's the line units which receive the call request signal from a calling line. Then secondly we have got the supervisory units which can send out the ringing signal and can rece. the clear signal from the calling and called telephones. And the third piece of signalling equipment doesrit really look much like signalling aquipment but it is, this is the operators headset because with this the operator can talk to the user, not just to chat about the weather though she can do this as well of course, iut to receive address information. That is the required number of the called teleptone, and so the means by which she does this is the ear piece of the signalling equipuent.

Well of course the operator in this system is the control, she is a very interesting piece of technology, but she is basically doing all the things that a control does in an ausomatic exchange, that is receiving the signalling information and operating on the switching equipment using her hands. Now thirdly lets look at the switching equipment. The array of jack sockets here and the plugs associated with the supervisory unit form the switching network of this exchange and a jeck socket into which she inserts that plug form a cross point so that the cross point is operated when she does that. So what we have here is effectively a 100 by 16 switching matrix which forms a concentrator. Now in this exchange there is no distributor but there is an expander and this is formed by the jack plug with which the operator calls a line and this same arrey of jack sockets, so when a plug is inserted here like this that is in fact forming a cross point operation in the expander.

So you see that this exchange although
it looks very different from an automatic
exchange, embodies the same functions as an automatic exchange although they're implemented just using a different technology.

Well lets turn our attention to the control again, to the operator, and look at some of the functions she's performing.

Operator: "Ielevision Centre" W/T

Malcolm: So I'm asking you to think of the operator as a control, receiving information over three interrol signalling parts, one of these boing from the calling lamps to her eyes, the second being from the supervisory lamps to her eyes, and the thixd being from the ear phone in her headset into her ear. And the information she's receiving from these three internal signalling powers, sne's processing and she's then operatine on the switching network using hor hands to bring about the connection of calls. Well this control is very much more flexible than the sort of eiectronic or electromechanical control one might
get in automatic exchange. For instance she doosn't have to be given the address information in the sort of rigid format which is required in an automatic system.

Operator: "Number Please" Malcolm: "Dr. Jolly his extension is 4 something or other." Operator: "Dr. Jolly he's on extension 46^{18}

Malcolm: "Thenk you"
Tony Jolly: "Hello, Tony Jully"
Malcolm: "Just testing thank you very much."
W / I

Molcolm: Also the operator can provide a number of vezy advanced facilities roouiring informotion storage and special translation of the adaress information.

Operator: "Number please"
Nalcolm: "Extention 59 please"
Operator: "Oh do you want Dr. Jolly?"
Melcolm: "Yes Please:
Operator: "Oh he's in the $O B$ unit Ilil
put you through now"
Molcolm: "Thank you"

Tony Joily: "qony Jolly"
Malcolm; "Just testing, thank you"

Melcolm: To do this sort of thing in an aldomatic system requines very sophisticated control. equipment. And ever since automatic exchanges vere introducod thein desjgners have been striving to achicve the sort of Plexioility that one gets with operator control. In public systems manual exchages have been largely replaoed by autometic ones, which schieve the spoed and cheapness but sacrifiees to some extont the sort of flexibility and personal service you get from the manurl system. And the sort of spaco savings one gete with an atomatio system arent roally thet signifioant. Howover, in recent years with the intmodiction of olectronics some of thes dravbacks have been removed. So Iot's look at a prototype eloctronic cxchange which goes some of the wey to rortoring the flexibility of operator serviro, ona achicver quite signifiownt space saving.

This part of the meruel boerd sontos above a hundrod lines. So Iot's look
at what the equivalent of this in an electronic exchange looks like.

CABY SMOL: This is it, just two boxes. The telephones are connected to the system. I'll dial number 102, so the call is established, well any exchange can do that of course, this exchange can do a lot more. But before looking at that let's see what the systems like. The telephones are digital, the speech signal is turned directly into a bit stream at the terminal. One of the boxes contains the switching and signalling circuits and the other contain-
the control. The control does the same job as the human operators we saw a moment ago. Well now lets look inside the boxes themselves. Everything is digital in the boxes, this cirouit is the switching circuit just logic gates, this is synchronising circuits and these circuits are to do with signalling and supervision. Now the second box, this one: contains the control, I'll switch it off and I:II take out the main card. This main card contains a computer, a micro-processor which just takes up one chip, this is it, and all the other bits of circuit, all the other chips are
memory circuits which are used in conjunction with the processor. Well having taken this out we've got to put it back again so in the meanwhile let's have a look at the signalling circuits and the switching circuits.

MALCOLM HAMER:
This diagram is an analogue representation of the digital exchange.

The local lines, of which there can be up to 256, each have an associated line unit to detect the call-request signal. The lines are connected to a 256 x 32 concentrator switching matrix which gives them access to any one of the 32 supervis units. A register may be associated with a call during the dialling phase by means of an access switch. The other side of each supervisory unit is connected to an inlet of a 32×256 exparder matrix: whose outlets are connected to the local lines.

Because the signals from the telephones are digital, the design of the switching and signalling equipment can be made much more efficient than an analogue arrangement like this by the use of

time-sharing techniques. Let's consider switching first. How can we switch digital signals?

Well, one possibility is to use a simple matrix of electronic crosspoint devices, such as AND gates. This switching network is just like an analogue switching networ eacept that signals can only pass in one direction through the network, from the incoming channels to the outgoing channel The complete switching network would therefore consists of two networks like this one.

Of course in practice we would use a multi-stage network rather than a single matrix, so as jo reduce the number of crosspoints. But we can achieve a much more remarkable reduction in the number of crosspoints by time-sharing them between a number of concurrent calls.

In this switching network bits, or groups of bits, from each incoming channel flow into a buffer, and are then switched through the network at a much higher bit-rate than that of the local lines. So, the crosspoint matrix, which is calle the space switch, has its crosspoints
time-shared between a number of calls. The switches associated with the buffers are called time switches.

You may have recognised this switching network as being similar to that of the digital trunk exchange shown in the course book.

In this case the incoming highways carry the signals of a number of speech channel in multiplexed form, so the incoming time-switches incorporate demultiplexers, which deliver the bits corresponding to individual speech channels into separate buffers. On the outgoing side of the network the channels are remultiplexed onto the outgoing highways.

In this type of time-space-time switching network it's possible to vary the proportions of time and space switching. Let's look at the eatreme case where all the time switches share a common highway.

Here there is no time switching at all. In this case the bit-rate of the common digital channel is the bit-rate of the individual speech channels multipled
by the maximum number of calls to be switched by the exchange. For large exhanges this extreme case is impractical because the finite speed of operation of electronic circuits limits the bit rate of the common channel and hence the maximum size of the exchange.

However, for a small local exchange this limitation is not a problem, so this approach can be used.

This is the switching network of the experimental digital exchange we have been looking at. In this case individual local lines are connected to the switching network, so no demultiplexing or remultiplexing is required.

Let's go through the operation of this network, representing the binary signals by 0 s and 1s. We'll concentrate on the top and bottom lines and follow a few bits from these through the network. I' this particular design, switching is c° bit by bit, so during each local lin time-slot just one bit passes into kuffer. A switching cycle then c. A switching cycle occupies one 1 time slot. Let's suppose that
incoming channel is to be connected to this outgoing channel. During the first common highway time slot this switch and this switch operate; so the bit passes over the common highway to the outgoing buffer. During the next time \cdots slot the bit from the next buffer can be transferr: in a similar way, and so on.

Let's suppose that the bottom charnel is to switched to this outgoing chanuel, so this switch and this switch operate, and the bit passes into this buffer. The bits fre all ongoing calls are thus transferred during one switching cycle. That cycle took exactly one local line time-slot, so the next bits now move into the buffers. The swi ching cycle is then repeated, so these bits are transferred to the outgoing buffers. As this is happening the previous bits flow out onto the outgoing channels.

Similarly, the next bits are transferred in the next switching cycle.

So, the result of this switching process is that bits flow in a continuous streain invo and out of the switching netwonk, even though the transfer of bits through.
the network takes place in a number of short bursts.

That's how the switching is done. Now let's look at signalling. The local line signals consists of groups of 9 bits, eight of which represent a pulse coded speech signal sample, and the ninth of which is a signalling bit. Each local signal consists of an eight bit signalling word. The signalling bits pass over the common highway in the switching network, along with the speech bits, so they can be monitored there by a few time-shared signalling units: one f for each signalling function.

This is the complete structure of the switching and signalling equipment.

In this diagram I've shown both switching networks: one for each direction of transmission. The speech signals for a call pass from the incoming channel of one telephone, through a time switch, over the forward highway, through another time switch, to the outgoing channel of the other telephone. The signals from the incoming channel of this second telephone pass through a time switch,
over the other highway, the backward highway, through a time switch, to the outgoing channel of the first telephone.

The sigralling units are attached to these two common highways. There are just four signalling units: a line unit, a register, and two supervisory units: one for detecting the clear signal from the calling telephone and one for detect: the slear signal from the called telephor

Because the register and supervisory units are connected to the common highwey:
they can monitor the signalling bits which appear in every rinth switching cycle. The line unit works slightiy differently, i」 monitors one common highway time slot to which the lines which are not in use are switched one after another in rotation.

So by being conrected to the common hughways the signalling units have access to all signalling iniormation on a sequentıal basis.
${ }^{1}$ ow let's look at the signais on cne of the common highways.

We'll consider two eight-bit speech words for two ongoing calls. The first bit of call no. 1 appears in one of the common highway time-slots, and the first bit of call no. 2 appears in another time slot, the second bit of the two calls appear in the same time slot but one cycle later and so on. So each cycle contains one bit from each cycle. The duration of each switching call is 13.9 microseconds.

GABY SMOL:

This is the bit stream for the forward common highway, I've only got two chanacl. showing in time slot one and time slot four. This pulse represents a bit on channel 1 followed by a bit on the second channel. After a complete cycle we get the next bit for channel 1 followed by the next bit for the 2na channel. There are 32 time slots available in a complete cycle from here to here so we can have up to 32 channels on this system. I can add a few channels using the cortrols on the exchange, this is adding channel time slot 11 and this one is another channel on time slot 20.

Well that's what the bit stream looks Iike. Now let's see some of the things the system can do. Let's imagine that 102 is engaged talking to somehody, iff I phone 102 I'm going to get the busy signal, so I phone star 2 and put my phone down. Now let's see what happens when 102 finishes his call, So the call is established. What happened then was that as soon as 102 finished the oxchange called me up to check thet I was still there and then establisined the call that I'd asked for previously.

Now let's look at another facility, lotis imagine that 102 wants to be able receite calls when he is in his office but when he is out of his office heid like tine calls to be transferred to 103. What he does is to dial star 31 followed by 103 and then puts his phone down. Now if I phone from this phone, 102, well it rings in 102^{\prime} s office for 4 seconds then it switches to 103. So the call is established to 103.

Well this system has got many advantages it's very compact it can handle several hundred lines and this is a prototype, the production model will be a lot snalic:

Also it's entirely digital. Now this means that one could replace a telephone terminals by fast data terminals. One could therefore use the same system for both the fast data network and the telephone network. Also of course it's very flexible because one can change facilities just by changing the computor programme. However, there are some things which a human operator can co which it might not je able to a 0. Consider for instance what would happen if 103 wanted to transfer his cails to 102 and didn't know that 102 had alrepry got his calls transferred to 103.

END CREDITS

The speakers were
Malcolm Hamer
Gaby Smol
Facilities
The General Electric Co. Ltd. HIRST RESEARCH CENTRE

Plessey Telecommunications Itd.

Production by
Tony Jolly

A Production for the Open University BBC-TY
(c) The Open University 1976

CAMERA SCRIPT
FACUITY NO: T. $321 / 9$
PROJECT NO: $00525 / 5228$

FRIDAY 27th FEBRUARY 1976
STUDIO 'A' A.P.
$\mathrm{VIC} / 6 \mathrm{HT} / 72119$

THE OPEN UNIVERSITY

TELECOMMUNICATION SYSTEMS
"Telephone Switching 2"
Senior Producer Nat Taylor
Producer/Director. Tony JollyVision MixerMig HarperFloor Mianager.Tony Guyan
Make-up Assistant. Martha Livesley
Graphics Designer Sally Garner
Designer Bernard Lioyd--Jone
Producer's Assistant Lesley Duncum
Technical Manager John Fane
Sound Supervisor Jerry Lawrence
Senior Cameraman. David Wilson
PRESENTERS
Malcolm Hamer
GABY SMOL
SCHEDULE

CATERAS:

1
2
3

SOUND:

TJ's by 1015

PLOOR MONITORS:

VTR.

TK:

EPISCOPE

INIAY:

ELECTRICAL SUPPLY

CAPTION STANDS
Two

SHOT NO.

2A
$4 B$
4 C
4

23A
$23 B$

230

23D

SHOT NO.

3
7

10

17
18

19

CAPTION IIST
TJ NO.

1

2

3
4

5

6

7

8

6

DESCRIPTION

"Block Diagram of PBX"
"Block diagram of Digital Exchange"
"Switching Equipment for Digital Exchange"
"Signalling Word"
"Switching Circuit for Digital Exchange"
"Line and Highway Signals for Digital Exchange"
(ON 3-3) - $2-$

RUNNING ORDER

$$
\bar{y} \quad \%
$$

，

i4．

дя＂

 \therefore दx תn！$\because 0$

5

凸E L三＂

Bi

－ $\mathrm{ar} \mathrm{x}-\mathrm{x}$ ：

Fr \quad－

 wr a moumertal anchiteotiro ot I是里。
（3 TMDOATEX MEX․

VT CIOCK

S/BTK/

RUN TK

1. TK (Dur: 17 ${ }^{11}$)

OPENING TITLES
MUIN VIT
(CSO at end of film)
$1 \pi / T$
\quad S.O.VT/
MLCOLM HAMER: This is a manual telephone exchange in which calls are connected by operators using a system of plugs and sockets. In the first part of this prosramme we're going to look at how this manual exchenge vorks and to see what parallels can be drawn between the principles of operation of this exchange and those of an automatic exchange.

This is one of a pair of telephones which we broucht over to this position on the manual board to demonstrate the operations involved in setting up a call between two telephones.

I'm going to go through all the operations involved starting with the celler lifting the handset of tre calling telephone.

Then the caller lifts his handset this
generates a call request signal which is sent to the Exchange and is detected in the line unit and this is signalled to the operator by a lamp being lit above a jack socket which corresponds to that telephone.

Then the operator sees this she knows that a call is required so she goes to the supervisory units and selects a free one there are sixteen. I will use No. 9 the operator takes a plug fron the supervisory unit and inserts this into the socket corresponding to the calling line. The operetor then throws a key into the 'speak' position and this eatablishes a speech peth between the calling telephone and her head set which she wears all the time, so the caller is then able to ask fon the celled line he wants. Lets suppose trat the aller has askod for 378 , that's the number of this other telephone. The operator tekes the second plug corrosponding to that supervisory unit and goos to this field of jack sockets and sclects 378. The next thing she does is to test wether or not that telephone is busy, because it mey heve been connected to a, on another
coll by one of the other operators and to do this she touches the tip of the plug on the ring. If she hears a click in her headsct this means that the telephonc is busy, thore is no click in this case so the telephone is froc. She con insert the plug. Che next operation is to ring the call telephone. To do this tho operator throws this koy into tho ring position.

When the colled uscr answors his telephone the speech path is then connected and tho operators job for that part of tho call is over. At the ond of the call when the users replace tooir hondsets clecr signels are sent to the crchange and theso are detected in the supervisory unit, so when the cellod user roplnces his hendsot a clear signal is sont to the exchenge and is detocted in the supervisory unit and this is indicated to the operator by this lomp lighting. And similarly when the celling uscer replacos his hondsot tho clear signol is dotected and indicated to the operator by a second lamp lighting. Then the operator soes both these lamps lit she knows that the call is over, so she con remove the two jacks.

And this supervisory unit is then froe for use on enother call.

Well those are the operations involved, before we look et the oxchenge in more deteil let's see on operator doing ell that ot full speed.

Operator: "Number please"
Inlcolm: "46 Tr. Jolly Plcase"
Opcrator: "Ixtonsion 46 Dr. Jolly I'll conncct you"

Tony Jolly: "Tony Jolly"
Molcolm: "Just testing thank you"

Vell although this exchenge looks vory different to en cutometic oxchenge it is roally functionally very similor and to show you this I am going to look at the various functions involved and relate theso to the sort of functions in on automatic exchonge you have been used to. An cxchonge cen bo thought of as consisting of three basic compononts.

CAP 1
in et (4'24' into $O B$ seq.)

Signclling, control and switching. The signelling perts of the archange recoive signels from a user or from anothor oxchange and pass those to the control and also receive sichols from the control
instructing signals to bo sent out to a CAP. 1 user or to another exchenge. The control acting on these, the instructions roceived vio signalling causes switching operations to take place in the switching network.

Well in this Minuol Exchange here we have got just those sono functions so lets look at sicnalling to stort with. Thore are three picces of signclling eouipment. First behind here thore's the line units Which receive tho call roquest signal from a calling line. Then secondly we hove got the suporvisory units wich con sond out the ringing sienal cad con rocei: the clonr signal from the calling ond collod telophones. find the thind piece of signolling equipment doesn't raolly look much like sismolling equipment but it is, this is the operetors headset because with this tho operctor can talk to the user, not just to shat obout the weather though sho an do this as well of course, but to receive cadress information. Thet is the requirod number of the called tolephone, and so the mons by mich sho does this is the ear piece of the sisnolline equipment.
rell of course the operator in this system is the control, she is a very interesting pioce of technology, but sho is besically doing all the things thet a control doos in an eutometic cachonge, that is recoiving the signolling irformation and operating on the switching equipment using her hands. low thirdiy lets look at the switehing equipment. The armay of jock sockets hore and tho plugs associatcd with the supervisory unit form the switching notwork of this exchonge and a jack socket into wich she insurts that plug form a cross point so that

S/I (lower third) the cross point is oporated when she does that. So what we heve here is offectively $s 100$ by 16 switching matrix In at 6'35" into VT tape wich forms a concentrator. Now in this erchnge there is no distributor but

TJ 3 there is on ompender/and this is formed
"Concentrator and Expander"
 by the jack plug with wich the operator calls a lino and this some Grey of jock sockets, so when or plug is inserted here liko this/that is in foct forming a ccoss point operetion in tho expender./ Out at 712" into VT tape
it looks very different from on outomotic
exchenge, embodics the same functions as on automotic exchange although they'ro implencnted just using a different technology.

1 roll lets turn our attention to the control again, to the operator, and look at some of the functions she's performing.

Operotor: "Tclevision Centre" \because / T

Mnlcolm: So I'm askine you to think of the opcretor as control, recoiving information over three intornel signolling ports, ono of theso being from tho colling lemps to her eyes, tho socond being from the supervisory lamps to her cyes, and the thind being from the oan phone in hor hoodset into her cor. And the information she's receiving from these three interncl signalling powors, she's procossing and she's then operating on the switching notwork using hor honds to bring about the connoction of calls. vill this control is very much more flerible then the sort of electronic or clectromechonical control one might
get in automatic archonce. For instence she doesn't hove to be given the addross information in the sort of rigid format Which is roquired in on sutomatic system.

Operator: "Wumber Please"
Malcolm: "Dr. Jolly his extonsion is 4. somothing or other."

Operator: "Dr. Jolly ho's on uxtonsion $46^{\prime \prime}$

Helcolm: "Thank you" Tony Jolly: "Hollo, Tony Jolly" Mincolm: "Just testing thanle you very much."
$1 / T$

Nolcolm: Also the operetor con provide \therefore number of very odvonced froilitios requiring informetion stornge md speciol trenslation of the cadress information.

Operatur: "Munbor ploase"
Mrlcolm: "Wrtention 59 pleese"
Operator: "On do you wont Dre Jolly?"
Molcolm: "Y.s Ploase"
Oporetor: "On he's in the OB unit I'll put you through nov"

In Icolm: "Thonk you"

Tony Jolly: "Mony Jolly"
Nolcolm: "Just tosting, thonk you"

Molcolm: To do tive sort of thing in on outomatic sustem roquires very sophisticetod control equipment. And cvor since cutomatic exchnges wore introducod thoir designers hove been siriving to schieve tho sort of flexibility thet one cets vits operator control. In public systoms monuri cachenges hove neen lorgely replaced by cutometic ones, wich cehieve the spoed ond choopness nut socrificos to some extent the sort of flexibility and personel servico you get from the menu-l systom. And the sort of speco sovings one guts vith an sutomatic system cren't roelly that signifficont. However, in recent yocrs with the introduction of eloctronics some of these drombecks heve been removed. So let's 10 k at a prototype olectronic axchonge which goes sone Jf the way to restoring the flexibility of opurator service, and schicvos quite significont spacu saving.

This part of the anurl borrd servos nbout a hundred linos. So Iot's look
5. 3 A

CU of Digital Exchange
Demonstrates simple A to B call.
6.

7.

CAP. 2 Explains and relates to equipment. Block diagram of Digital Exchange
8.

2 A
2S Gaby + Equiprant
Intercut with:

CU of processor
CU of Equipment
(AS DIRECTED)
9.

10. $1 \quad \mathrm{~B}$

CU of CSO Blue Board MALCOLM: (O.O.V.)
3 A Explains with pointer.

CAP. 3
Switching Equipment for
Digital Exchange

EPISCOPE SEQUENCE
(on CSO)
11.

Episcope
/This is $\mathbb{T}-S-T$ switch as in book. CELII 1 Explains operation.

Individual lines, as well as p.c.m. systems can be connected to this type of switching network.
12. Episcope

CEIL 2
We don't have to have this balance of time and space switching. We can go to one extreme - all space. Just like analogue switching.
13. Episcope

CELI 3
14.

Episcope
CELL 4

In this case the buffers become unnecessary, so we take them away./

But this is too expensive.

Or we can go to other extreme - all time switching.
15. Episcope

CELI 5
16. Episcope CELI 6-8

This is a bit dodgy from reliability point of view, but OK for small exchanges. This is how this experimental PABX works.
[0] or [1] Symbols

Go through one time cycle moving magnetic "bits" around.

Well, that's switching. What about signalling?
17. 2 A

These are local line signals. Every

CU of CAP. 4
Signalling Word
ZOOM OUT to Whole Cap. 9th bit is signalling. Eight speech words give one signalling word. This can represent call-request, digit signal, or clear.

Lets look at complete switching and signalling set up.
18. 3 A Well, it's got the set-up we saw

CAP. 5
Switching Circuit for
Digital Exchange
earlier twice: one for each direction of transmission. Hung onto the common
highways are the signalling units. These are time-shared between all ongoing calls. So same time-sharing principle of T-S-T is here applied to make signalling nice and cheap.

Explains now line unit, register, and supervisory unit scan all calls. Pay
 manages to scan all lines by switching of signalling bits from all lines into a signalling time-slot.

So, what do we get on these highways. Well, this exchange works on bit by bit switching, so what we'll see will be:
19. 2 A

CAP. 6
Line and Highway Signals for Digital Exchange

This shows what happens on one of the two highways with two calls taking place.

ZOOM IN to CU of Signals Lets look at the real thing:in Centre.
20.

3 A
CU of CRO on Digital Exchange Explains Equipment

/GABY: Well, now lets return to the processor which provides the control Intercut with: functions. Can be programmed to give any required facilities. For example:

$$
\frac{3}{\text { CU of Equipment }}
$$

(AS DIRECTED) Demo of transfer.

Demo of another facility.
22. $\frac{2 \mathrm{~A}}{2 \mathrm{~S} \text { Gaby + Equipment }}$ So, you see how super-duper this all is. Another benefit of this sort of arrangement is that the technologies of the switching and control are the same, so there is no interface problem between them. This makes for even cheaper system.

Final point: Just as there is signalling from terminal to exchange, there is also signalling exchange to terminal AND the signal alphabet is not restricted to 12 signals as with multifrequency; there can be 256 different signals; push-buttons could become a full typewriter keyboard; AND signalling can take place without interrupting speech These three things add up to full
interaction between user and exchange
throughout the call or simultaneous data (graphics, text) transmissior.

Example: Exchange could send user the identity of the caller BEFORB the user answers the telephone:
23.

S / I

23A. TJ5
The Speakers were
Malcolm Hamer
Gaby Smol

23B. TJ6
Facilities
The General Electric Co. Itd.
HIRST RESEARCE CENTRE
Plessey Teこecommuncations Itd.
230. TJ7

Production by
Tony Jolly

23D. TJ8
A Production for the
Open University BBC-TV
(c) The Open Unjversity 1976

