The passage of ‘Oumuamua through our solar system.

‘Oumuamua passed within 0.25 astronomical units (AU) of the sun (1 AU is the distance between the sun and the Earth). As a well-behaved comet, it should have developed a coma and tail as ice and dust vaporised from the surface by a process called sublimation. But, despite an organised and concerted observing campaign by the international astronomical community, no trace of a coma or tail was seen.

Indeed, measurements of its composition showed it had more in common with asteroids than with comets: the low reflectiveness of its surface indicated that there was little, if any, ice. It also seemed to have organic material that had been altered by exposure to cosmic radiation – like many asteroids.

Alongside such observations was ‘Oumuamua’s very unusual shape: although the object couldn’t be seen directly, modelling of its light curve (how the amount of reflected light varies as an object rotates) suggested that it was long and thin – cigar-shaped rather than the more usual semi-rounded appearance of asteroids and comets. This led the more fanciful to posit that ‘Oumuamua might be a fabricated, rather than a natural, visitor to the inner solar system, perhaps an alien spacecraft.

Latest evidence

So: comet, asteroid or spaceship? We can probably discount the interstellar spaceship – surely it would have at least paused to investigate the mixture of signals emanating from our planet. So comet or asteroid are the options left. The same group that published the discovery report of ‘Oumuamua continued observing the object, acquiring data from instrumentation on practically all the world’s major ground-based telescopes, as well as from the Hubble Space Telescope.

Hubble Space Telescope. NASA

What they discovered was that there was a deviation from the path that ‘Oumuamua should be following if it were influenced by gravitational effects alone. It seemed as if ‘Oumuamua was being slightly pushed away from the sun. The team investigated every non-gravitational effect that they could: was ‘Oumuamua swayed from its path by the pressure of solar radiation? Was the effect of thermal emission as the object rotated significant? Had it had a collision that changed the trajectory?

Other options included it having an unusual distribution of mass or perhaps a centre of gravity displaced from the centre of its body. It could also be highly magnetised, so that it interacted more strongly with the solar wind. Based on their extremely precise and comprehensive series of observations, the team surmised that none of these effects was sufficient to explain ‘Oumuamua’s orbit. Instead, they concluded that significant release of gas by sublimation was the main feasible mechanism – and that would suggest it is a comet.

Profound implications

This is a significant conclusion to reach, not just for ‘Oumuamua, but for cometary and asteroidal science more generally. There has only been a handful of previous observations of non-gravitational effects on cometary orbits, mainly because the measurements required to make the calculations have to be undertaken over a very wide distance. Assuming ‘Oumuamua was outgassing in a similar way to other comets, then the body was losing water and dust at a rate of about 2.4kg per second.

This compares with 20kg per second for 67P/Churyumov-Gerasimenko. It would appear that although ‘Oumuamua seems to have a similar density to solar system comets, it must be much stronger, given the paucity of dust released. Or perhaps the dust was more firmly bound to the surface by the organic compounds present.

So can we really say 1I/‘Oumuamua is a comet, albeit with asteroidal properties? Or could it be an asteroid with cometary properties? Does it matter? I’m not sure that it does. The division between asteroids and comets in the solar system used to be obvious: asteroids had circular orbits, were made of rock and metal and lived in the asteroid belt between Mars and Jupiter. Comets had inclined elliptical orbits, were made of rock and ice and came from further away.

But over the past few years we have discovered families of asteroids scattered all over the solar system, as well as Kuiper Belt Objects. We have also found comets with both short and long orbits. And we have seen unusual features on objects that we thought we knew quite well. The asteroid Ceres, for example, has salts left behind as ice vaporised from the surface by sublimation – a process often seen in comets, but not in asteroids.

The ConversationSince ‘Oumuamua, along with small bodies in the solar system and instestellar guests, seem to exhibit a spectrum of compositional and dynamic properties, it may be time to think beyond the asteroid versus comet division, and look for a new way to classify these objects. Perhaps we need many more categories. Or maybe just one – the class of Small Body. Clearly ‘Oumuamua is showing us that we have not yet uncovered the variety of objects to be found in our own neighbourhood.

Monica Grady, Professor of Planetary and Space Sciences, The Open University

This article was originally published on The Conversation. Read the original article.

Contact our news team

For all out of hours enquiries, please telephone +44 (0)7901 515891

Email us

News & articles

Group of people using smartphones

Research to bridge the gap between marginalised communities and tech developers

A project which will join up conversations about future technologies between communities which tend to be marginalised and industry partners has just got funding.

9th July 2020
See all