Skip to content

Toggle service links

You are here

  1. Home
  2. Dr Kadmiel Maseyk

Dr Kadmiel Maseyk

Profile summary

  • Central Academic Staff
  • Lecturer in Environmental Sciences
  • Faculty of Science, Technology, Engineering & Mathematics
  • School of Environment, Earth & Ecosystem Sciences
  • kadmiel.maseyk

Research interests

I am a plant ecophysiologist interested in how plant function affects ecosystem carbon and water biogeochemistry. I have a stong interest in plant and ecosystem responses to environmental variability and global change processes. My work is predominantly field based, and has covered environments from the poles to the tropics.

Research Activity

Externally funded projects

The impact of hydrological change on carbon fluxes and soil bacterial biomass in a species-rich calcareous grassland

RoleStart dateEnd dateFunding source
Lead03/Jul/201725/Aug/2017NERC Natural Environment Research Council
This is a summer student project, under the NERC Research Experience Placement (REP) scheme. The aim of this project is to investigate the impact of the different hydrological treatments on soil microbial biomass and soil-atmosphere carbon fluxes at the RainDrop experimental site. The primary hypotheses the student will be tasked with testing are: 1) CO2 production decreases under the drier and increases under the wetter conditions; 2) methane uptake increases under the drier and decreases under the wetter conditions; and 3) CO2 fluxes are coupled to and methane fluxes decoupled from changes in microbial biomass carbon. The rationale underlying these hypotheses is that the well understood response of soil respiration to soil moisture is associated with changes in total microbial abundance in this system, as opposed to inactivation of the communities, and that methane uptake increases with drought due to greater porosity of dry soil and reduces under wetter conditions due to diffusive limitations and methanogenisis at anoxic sites in the wet soil.

Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra- Arctic Methane Sources-UAMS

RoleStart dateEnd dateFunding source
Co-investigator01/Apr/201731/Mar/2020NERC Natural Environment Research Council
This project will refine understanding of the current magnitude of methane emissions from the Arctic. In particular, emphasis will be placed on the processes currently under- represented and poorly understood in concerning Arctic methane (CH4) balance. These are: a) the role, magnitude, and processes where by methane is released from non-inundated tundra or “dry tundra” and b) the role of cold season in annual CH4 emissions. The project will incorporate this new understanding in three major models JULES, LPJ, and TCF. Special emphasis will be placed on understanding processes including how, despite much conventional wisdom, poorly inundated tundra can be a major source of Arctic methane emissions, in some cases greater than those of inundated tundra. The overarching objective is to improve our ability to estimate current and predict future CH4 fluxes in the Arctic by improving understanding of the temporal and spatial control on CH4 flux.

Climate Change Impacts on a Calcereous Grassland

RoleStart dateEnd dateFunding source
Lead01/Nov/201531/Oct/2020ECT Ecological Continuity Trust
Understanding the impacts of climate change on sensitive and high-conservation value ecosystems is key for their successful management and provision of ecosystem services. This project will establish a large field-based experimental facility to investigate the impacts of changing hydrological regimes on a calcareous grassland. The experimental set-up involves the construction of up to 16 large rain-shelters, combined with irrigation systems, to apply both drought and wetting treatments to a grassland ecosystem at the Upper Seeds experimental site, Wytham, Oxford. Planned as a platform for long-term ecological experiments, it will host over time a number of research projects from different institutions, with a PhD project from the OU and a DroughtNet-linked project from Oxford due to start field work in spring 2016. This bid is to finalise the construction of the shelters, following prototype trials at the OU. Funds have already been secured for shelter construction from the Patsy Wood Trust through the ECT; decisions on the initial number and time-frame for remaining shelter construction are required for this stage. This project is the continuation of an earlier project initiated by Jonathan Silvertown under budget code HGSE 4240 C4509.

Publications

Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles (2018-06-18)
Whelan, Mary E.; Lennartz, Sinikka T.; Gimeno, Teresa E.; Wehr, Richard; Wohlfahrt, Georg; Wang, Yuting; Kooijmans, Linda M. J.; Hilton, Timothy W.; Belviso, Sauveur; Peylin, Philippe; Commane, Róisín; Sun, Wu; Chen, Huilin; Kuai, Le; Mammarella, Ivan; Maseyk, Kadmiel; Berkelhammer, Max; Li, King-Fai; Yakir, Dan; Zumkehr, Andrew; Katayama, Yoko; Ogée, Jérôme; Spielmann, Felix M.; Kitz, Florian; Rastogi, Bharat; Kesselmeier, Jürgen; Marshall, Julia; Erkkilä, Kukka-Maaria; Wingate, Lisa; Meredith, Laura K.; He, Wei; Bunk, Rüdiger; Launois, Thomas; Vesala, Timo; Schmidt, Johan A.; Fichot, Cédric G.; Seibt, Ulli; Saleska, Scott; Saltzman, Eric S.; Montzka, Stephen A.; Berry, Joseph A. and Campbell, J. Elliott
Biogeosciences, 15(12) (pp. 3625-3657)
Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh (2018-06-04)
Sun, Wu; Maseyk, Kadmiel; Lett, Céline and Seibt, Ulli
Biogeosciences, 15(11) (pp. 3277-3291)
Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland (2018-02-01)
Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi and Seibt, Ulli
Atmospheric Chemistry and Physics, 18(2) (pp. 1363-1378)
Assessing a New Clue to How Much Carbon Plants Take Up (2017-07-05)
Campbell, J. Elliott; Kesselmeier, Jürgen; Yakir, Dan; Berry, Joe A.; Peylin, Philippe; Belviso, Sauveur; Vesala, Timo; Maseyk, Kadmiel; Seibt, Ulrike; Chen, Huilin; Whelan, Mary E.; Hilton, Timothy W.; Montzka, Stephen A.; Berkelhammer, Max B.; Lennartz, Sinikka T.; Kuai, Le; Wohlfahrt, Georg; Wang, Yuting; Blake, Nicola J.; Blake, Donald R.; Stinecipher, James; Baker, Ian and Sitch, Stephen
Eos, 98
Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest (2017)
Kooijmans, Linda M. J.; Maseyk, Kadmiel; Seibt, Ulli; Sun, Wu; Vesala, Timo; Mammarella, Ivan; Kolari, Pasi; Aalto, Juho; Franchin, Alessandro; Vecchi, Roberta; Valli, Gianluigi and Chen, Huilin
Atmospheric Chemistry and Physics, 17(18) (pp. 11453-11465)
Resilience to seasonal heat wave episodes in a Mediterranean pine forest (2016-04)
Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir and Yakir, Dan
New Phytologist, 210(2) (pp. 485-496)
Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland (2016-02)
Sun, Wu; Maseyk, Kadmiel; Lett, Céline and Seibt, Ulli
Journal of Geophysical Research: Biogeosciences, 121(2) (pp. 438-450)
A soil diffusion–reaction model for surface COS flux: COSSM v1 (2015-10-02)
Sun, W.; Maseyk, K.; Lett, C. and Seibt, U.
Geoscientific Model Development, 8(10) (pp. 3055-3070)
Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains (2014-06-24)
Maseyk, Kadmiel; Berry, Joseph A.; Billesbach, Dave; Campbell, John Elliott; Torn, Margaret S.; Zahniser, Mark and Seibt, Ulli
Proceedings of the National Academy of Sciences, 111(25) (pp. 9064-9069)
Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in Southern Great Plains winter wheat (2014-01-15)
Billesbach, D.P.; Berry, J.A.; Seibt, U.; Maseyk, K.; Torn, M.S.; Fischer, M.L.; Abu-Naser, Mohammad and Campbell, J.E.
Agricultural and Forest Meteorology, 184 (pp. 48-55)
High Arctic wetting reduces permafrost carbon feedbacks to climate warming (2014)
Lupascu, M.; Welker, J. M.; Seibt, U.; Maseyk, K.; Xu, X. and Czimczik, C. I.
Nature Climate Change, 4(1) (pp. 51-55)
Evaluating remote access to fieldwork with interactive fieldcasts for distance learning students (2017)
Robson, Julie; Cooke, Julia; Wheeler, Philip; Maseyk, Kadmiel and Collins, Trevor
In : The 6th eSTEeM Annual Conference (25-26 Apr 2017, The Open University, Walton Hall, Milton Keynes)
Widening access to fieldwork with interactive livecasts (2016-09)
Cooke, Julia; Wheeler, Philip; Maseyk, Kadmiel and Collins, Trevor
In : Enhancing Fieldwork Learning Showcase 2016 (12-13 Sep 2016, Reading, UK)