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Do we have a distinct body 
of knowledge about MOOC 

learning? 



Why do we need a distinct 
body of knowledge about 

MOOC learning? 



Massiveness	
• Large	numbers	of			

⎻ Learners		
⎻ AcEviEes	
⎻ Courses		

Openness	
• Diversity	of		

⎻ Demographics	
⎻ Backgrounds	
⎻ MoEvaEons	&	Goals	

•  Engender	different	kinds	of	pedagogy,	
opportuniEes,	challenges	and	interacEons	

•  Require	research	methods	that	can	be	
applied	efficiently	at	scale	

Need	to	consider	
•  SubpopulaEons	
•  Diverse	parEcipaEon	paPerns	
•  New	measures	of	success	/	

definiEons	of	learning	

              s are different than 
traditional online courses in 

important ways 



Yet much                research 
remains rooted in traditional 
paradigms of online learning 
that do not align with these 

characteristics 



•  What	are	the	core	characterisEcs	that	
disEnguish	MOOCs	from	other	learning	
environments	and	thus	merit	the	focus	of	
our	aPenEon?		

•  What	different	kinds	of	learning	outcomes	
are	valuable	and	valued	in	MOOCs?		

•  What	kinds	of	acEons	and	interacEons	
should	be	happening	in	MOOCs	(and	why)?		

Key Conceptual  
Questions for MOOC 
Study 



•  How	can	and	should	the	power	of	human	
intellect	and	machine	computaEon	be	
brought	together	to	maximize	insight?		

•  How	can	we	handle	large	quanEty	of	acEvity	
efficiently	while	aPending	to	the	complexity	
of	interacEon	and	learning	processes?		

Key Methodological 
Questions for MOOC 
Study 



D A T A 	

T H E O R Y 	
C O M P U T A T I O
N 	
D I S P L A Y 	

U S E 	

InvesEgaEon	of	the	interacEon	
pracEces	in	large-scale	learning	
environments	based	on	analysis	
of	the	arEfacts	le^	behind	by	
students’	and	instructors’	acEvity	



Conceptualizing the Role of Discussions in Learning: 
Differentiating Learning-Related & Unrelated Discussions 



D I S P L A Y 	

T H E O R Y 	
C O M P U T A T I O
N 	

Our	MOOC	
Discussion	

Data	

D A T A 	

U S E 	

Challenges	of	post-hoc	data	

•  What	is	available	+	sharable	

•  No	data	design	(seangs	or		structure)	

•  Limited	control	(+	info)	about	learning	
context	of	generaEon	

•  Ambiguous	inferences	

	

Our	framing	/	goals	

•  “Q&A”	style	discussions	in	courses	
with	similar	pedagogy	

•  Increasingly	distal	generalizaEon	

•  Consider	variaEons	in	Eme	



D A T A 	

D I S P L A Y 	

T H E O R Y 	

Modelling	
Ques8ons	

1.  Do	content-related	threads	in	a	staEsEcs	
MOOC	discussion	forum	have	disEnct	
linguisEc	features	?	

2.  Can	these	be	used	to	create	a	model	to	
reliably	idenEfy	them?	

3.  Does	the	model	generalize	to		

•  another	offering	(same	MOOC)?	

•  a	different	staEsEcs	MOOC?	

•  MOOCs	on	other	topics?	

4.  Is	the	model	robust	over	the	duraEon	of	
the	course?	

C O M P U T A T I O
N 	

U S E 	



D I S P L A Y 	

T H E O R Y 	

Natural	
Language	
Processing	
[in	Lightside	RW]	

U S E 	

•  Use	linguisEc	features	to	predict	if	
post	is	about	learning	content	

•  Unit	of	analysis	=	Thread	

•  IniEally	represented	by	Starter	
post	

•  Later,	replies	incorporated	as	well	

•  Hand-coding	by	(human)	research	
assistants	

•  Detailed	coding	guide	+	training	

•  Good	interrater	reliability	(α > 
0.75)	

•  Bag-of-words	feature	extracEon	

•  Unigrams	and	bigrams	only,	parts	
of	speech	unhelpful,	stop	words	
*IN*	

C O M P U T A T I O
N 	

D A T A 	



D I S P L A Y 	

T H E O R Y 	

Supervised	
Machine	
Learning	

[in	R]	

U S E 	

•  2236	extracted	features	used	to	train	
a	binary	L2	regularized	logisEc	
regression	model	

•  Confusion	matrix	and	data	
restructuring	for	model	
opEmizaEon	

•  EvaluaEon	via	10-fold	cross	
validaEon	+	4	test	sets	

•  Supplemental	Modelling	

•  AddiEon	of	views	+	votes	

•  Models	of	only	views	+	votes	

•  Tests	sets	divided	into	three	equal	
subsets	based	on	Eme	of	creaEon	

C O M P U T A T I O
N 	

D A T A 	



Courses	
Course	 Usage	

Total	#	of	
Posts	

#	of	Threads	
(SPs)	

#	of	SPs	
Coded	

SP	
Content	%	

StatMed’13	
(StaEsEcs)	

Training	Set	 3320	 844	 837	[844]	 47%	

	StatMed’14	
(StaEsEcs)	

Test	Set:		
Cross-Offering	

1218	 310	 304	[310]	 54%	

StatLearn	
(StaEsEcs)	

Test	Set:		
Cross-Course	

3030	 626	 298	[300]	 51%	

PSY	
(Psychology)	

Test	Set:		
Cross-Domain	

(Near)	
2307	 438	 438	[438]	 28%	

YBW	
(Physiology)	

Test	Set:		
Cross-Domain	(Far)	

2467	 825	 299[300]	 40%	



Note:	Views	and	votes	did	not	improve	model		and	
were	poor	predictors	on	their	own	

D I S P L A Y 	

T H E O R Y 	

Model	
Results	

U S E 	

C O M P U T A T I O
N 	

D A T A 	

  StatMe
d’13 

StatMe
d’14 

Stat 
Learn PSY YBW 

Accuracy 0.80 0.81 0.80 0.80 0.73 

Kappa 0.61 0.62 0.60 0.52 0.42 

Recall 0.79 0.85 0.90 0.72 0.60 

Precision 0.79 0.81 0.76 0.62 0.68 

0.0	

0.5	

1.0	
Recall	 Precision	

0.0	

0.5	

1.0	
Accuracy	 Kappa	



Model	Performance	Across	Time	Segments	



D I S P L A Y 	

T H E O R Y 	

Improving	
NLP	

Classifica8on	

U S E 	

Dynamic	Interrelated	Post	and	
Thread	Categoriza8on	(DIPTiC)	

	

•  Verify	performance	on	replies	

•  Apply	classifier	to	both	thread	starter	
and	all	replies		

•  Establish	cutoff	threshold	for	percent	
of	content	replies	in	content	thread		

•  Compare	starter-	and	reply-based	
classificaEons,	manual	triage	on	
mismatches	

•  Improvement	on	StatMed’14	data	
•  Accuracy	.81	->	.88	
•  Kappa	.62	->	.76	

C O M P U T A T I O
N 	

D A T A 	



D I S P L A Y 	

T H E O R Y 	

DIPTiC		
in	ac8on	

U S E 	

C O M P U T A T I O
N 	

D A T A 	

Applica8on	to	StatMed’14	Data	



StatMed’13

StatMed’14

StatLearn

YBW

PSY

Course Subject Learning Process Question Words Connectors Existence/Condition Course TasksQuality/Quantity Effort / Action People Appreciation/Greeting
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Content-Related	
Discussion	Posts	
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Discussion	Posts	

Ques8on	Words	+	Connectors	

e.g.	“can”	“does”	“why”	“how”	
“which	“and”	“of”		“than”	“is”	

Course	Tasks	+	People														
+	Apprecia8on	/	Gree8ngs		

e.g.	“answer”	“exam”	“course”	
“lecture”	“thank”	“good”	“I”	“my”	

Top Feature Distribution by Category 



D A T A 	

D I S P L A Y 	

T H E O R Y 	

U S E 	

Student	&	
Instructor	
Support	

C O M P U T A T I O
N 	

Post-Hoc	Filtering	

•  Filter	to	select	only	content	threads	
•  Reduce	#	of	threads	to	review	by	more	

than	half	and	create	>	85%	hit	rate	of	
those	reviewed	

	

Live-Tagging	Tool	

•  Content	/	non-content	label	suggested	
to	learners	(manual	change	possible)	

•  Support	student	metacogniEon,	
awareness	of	contribuEons	



T H E O R Y 	

D A T A 	

U S E 	

D I S P L A Y 	

Understanding	
Content	Based	
Interac8on	

C O M P U T A T I O
N 	

QuesEons	
	
1.  In	what	ways	do	unparEEoned,	

content-related,	and	non-content	
social	networks	show	disEnct	
characterisEcs?	

2.  What	differences	in	the	discussion	
interacEons	may	account	for	the	
disEncEons	between	networks?	

3.  What	effects	do	different	Ee	
definiEons	have	on	network	
characterisEcs?	



T H E O R Y 	

D A T A 	

U S E 	

D I S P L A Y 	

Tie	Defini8on	
Effects	

C O M P U T A T I O
N 	
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D A T A 	

U S E 	

D I S P L A Y 	

StatMed’14	
Profile	

[CATEGORY	
NAME]	

[CATEGORY	
NAME]		

THREADS	

468	threads	

349	threads	

Content-	
related	
acEviEes	

178	
31%	

Both	
157	
28%	

Non-	
content	
acEviEes	
232	
41%	

PARTICIPANTS	

T H E O R Y 	
C O M P U T A T I O
N 	
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Tie	Defini8on	Effects	-	Resul8ng	Network	Proper8es	
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Tie	Defini8on	Effects	-	Resul8ng	Networks	



D A T A 	

U S E 	

D I S P L A Y 	

Qualita8ve	
Analysis	

T H E O R Y 	

Using	Computa8onal	Methods	to	
Pinpoint	Where	to	Look	

C O M P U T A T I O
N 	

•  IdenEficaEon	of	relevant	
communiEes	and	sub-networks		

•  StraEfied	Random	Sampling	
across	thread	length	to	select	
posts	to	examine	manually	

•  Again	threads	taken	intact	for	
analysis	

•  InducEve	theme	analysis	used	to	
make	meaning	of	interacEons	
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Content-related	network	
(#	of	nodes	=	335,	#	of	edges	=	848)	

Non-content	network	
(#	of	nodes	=	389,	#	of	edges	=	724)	

Content	vs	Non-Content	Networks	
(Limited	Copresence	Ties)	

						Content-related	
						Non-content	

Content	interacEons	had	bigger	threads	with	
more	repeat	posters	and	involved	more	
involved	topics,	complicated	interacEon	

techniques	+	social	presence	cues		
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Learner	Modules	

CL	=	Content-related	
Learner	Module		
NL	=	Non-content	
learner	module		

CL1	
(#	of	nodes	=	23,	#	of	edges	=57)	

NL1	
(#	of	nodes	=	62,	#	of	edges	=71)	
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U225:	Congrats	[u10]!	Yes,	it	has	been	hard,	but	fun,	and	
we	learned	an	awful	lot,	right?	
U110:	Great!	Everyone	it	was	a	pleasure	to	work	with	
you.	Thank	you….	
U10:	YES	[u225]!	And	[u110]	-	the	test	was	scary	-	I	
thought	of	my	discussion	board	friends	oXen!!	
U216:	Thanks,	thanks	so	much	to	[u10],	[u152],	[u110],	
[u225]	and	everybody	who	helped	us	to	understand	this	
beau1ful	course!	And	in	my	case	also	for	wri1ng	many	
posts,	I	see	I	have	improved	my	English	skills	and	my	
sta1s1cs	vocabulary!!!	
U225:	[u10],	[u216],	[u152],	[u110],	[u515]	and	everyone,	
your	discussions	helped	me	so	much.	I	was	always	a	few	
days	behind	you	in	homework	-	glad	I	was	able	to	catch	
up	in	the	last	weeks	and	par1cipate	a	liZle	bit….	

Content-related	
learner	module	1	

Examining	Learner	Interac8ons	

U225:	[u10],	[u216],	[u152],	[u110],	[u515]	and	everyone,	
your	discussions	helped	me	so	much.	I	was	always	a	few	
days	behind	you	in	homework	-	glad	I	was	able	to	catch	
up	in	the	last	weeks	and	par1cipate	a	liZle	bit….	

U10:	YES	[U225]!	And	[u110]	-	the	test	was	scary	-	I	
thought	of	my	discussion	board	friends	oXen!!		

Across	the	network	content	interacEons	involved	more	involved	
topics,	complicated	interacEon	techniques	+	social	presence	cues		
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	 CI1 CI2 NI1 NI2 

#	of	nodes	(%	in	network) 184	(54.93%) 75	(22.39%) 168	(43.19%) 47	(12.08%) 

#	of	edges	(%	in	network) 400	(47.17%) 105	(12.38%) 315	(43.51%) 55	(7.6%) 

Avg	node	degree	(SD) 4.35	(11.06) 2.8	(7.56) 3.75	(11.18) 2.34	(6.03) 

Avg	edge	weight	(SD) 2.23	(3.21) 1.83	(1.72) 2.11	(2.48) 1.20	(0.44) 

Instructor	Modules	

CI	=	Content-related	instructor	module								NI	=	Non-content	instructor	module	

CI1	 CI2	 NI1	 NI2	
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U1		
•  Responses	at	all	levels	
•  Coaching	and	supporEng		
•  Social	presence	cues	

U417	
•  Responses	to	thread	starters	
•  Straight	forward	answers		
•  LiPle	social	presence	

Comparing	Instruc8onal	Approaches	

“Think	about	it	again	using	the	hint	
and	let	me	know	if	you	have	any	
other	quesAons.”	
	

“That	is	correct	-	Nice!	So	how	
would	you	use	this	to	solve	the	
quesAon?”	

“A	bell	shape	is	not	necessary.	You	
could	have	a	'bimodal'	distribuAon	
where	the	two	groups	do	not	follow	
a	bell	shape.”	
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Research	Gap	in	the	
Rela8onship	between		

Grades	/	Cer8ficates	&	Forum	
Ac8vity	

	

1. Inconsistent	findings	for	which	
variables	are	useful	predictors	for	
grades	/	cerEficates	

2. 	%	of	variance	explained		o^en	
not	reported	

3. LiPle	consideraEon	of	discussion	
content	
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Our	Ques8ons	

1.  Are	there	differences	in	MOOC	
compleEon	and	final	course	
grade	for	learners	who	did	or	did	
not	contribute	to	(content	and	
non-content)	discussions?	

2.  Is	forum	contribuEon	(measured	
by	quanEty	and	network	
measures	for	content	and	non-
content	discussions)	useful	for	
predicEng	MOOC	course	grades?	
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Context	&	

Data	

D A T A 	

U S E 	

•  StaEsEcs	in	Medicine	MOOC	

•  2	Instructors	facilitate	forums	

•  Learners	
•  15,073	registered	
•  11,664	with	final	grade	
•  565	in	forum		

•  555	w/	forum	+	grade	data	

•  817	threads	(inc.	3124	posts)	classified	
as	Content	/	Non-Content	using	
unigram/bigram	model	+	DIPTiC	
method	

•  Content,	and	non-content	networks	
constructed	using	Limited	Copresence	
Ee	definiEon	(threshold	<	5	replies)	
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Results	(Details	in	LAK’18	Paper)	

•  Making	any	kind	of	forum	
contribuEon	is	associated	with	a	
higher	likelihood	of	passing	the	
course,	making		both	kinds	is	even	
higher	(77%	vs	58%	vs	32%)	

•  ContribuEng	to	content-related	
discussions	(only)	associated	with	
higher	final	grade,	but	very	small	
percentage	of	variance	explained		

•  Network	centrality	variables	don’t	
add	anything	beyond	basic	quanEty	

C O M P U T A T I O
N 	

T H E O R Y 	
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Implica8ons	
Three	possible	explanaEons	for	small	%	of	
variance	in	final	grade	explained	by	forum	

1.  Forum	parEcipaEon	has	liPle	
impact	on	learning.	
	→	Need	beeer	pedagogical	design	of	
discussions	

2.  Forum	parEcipaEon	is	useful,	but	
not	measured	properly.	
	→	Need	to	assess	contribu8on	quality,			
reading	

3.  The	type	of	learning	that	occurred	
in	the	forum	is	not	well	captured	by	
final	grade.	
→		Need	research	on	alterna8ve	
perspec8ve	on	learning,	such	as	over	8me	
changes	in	ways	of	par8cipa8on	and	roles	

T H E O R Y 	
C O M P U T A T I O
N 	
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Where	Do	We	Look	For	Learning?	

Assignment	&	Quizzes	
(Brinton	et	al.,	2016;	Jiang	et	
al.,	2014)	

Final	Grades	&	Cer8ficates	
(Bergner	et	al.,	2015;	Houston	et	al.,	
2017)	

CitaEons	for	
these	

In
te
rn
al
	T
oo

ls
	

Ex
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rn
al
	T
oo

ls
	

During	Learning	 Aier	Learning	

Social	Media	

Publica8ons	&	Socie8es	
(Wang,	2017)	

Github	&	StackOverflow	
	(Chen	et	al.,	2016)	Facebook,	Twieer,	blogs	

(Joksimović	et	al.,	2015a;	
Joksimović	et	al.,	2015b)	

Forum	
(Kovanović	et	al.,	2016;	
Tawfik	et	al.,	2017)	



Future work: an alternative 
perspective – learning as 
positioning 

•  Learning	is	conceptualized	as	developing	one’s	ability	to	
interact	knowledgably	in	a	content	domain	

•  Learning	outcomes	are	then	seen	as	changes	in	how	
one	posiEons	themselves	in	a	MOOC	discussion	

•  Yi	Cui’s	dissertaEon	work	aims	to	understand	posiEon	
and	posiEon	taking	through	combining	of	content	
analysis	(nature	of	the	contribuEons	made)	and	social	
network	analysis	(nature	of	one’s	relaEon	to	others)	

•  She	will	also	examine	the	impact	of	pedagogical	
contexts	on	interacEonal	processes	



What	core	characteris8cs	dis8nguish	MOOCs	from	other	learning	
environments	and	merit	our	aeen8on?	

•  Mixture	of	learning-related	and	unrelated	discussions	
•  Lack	of	background,	context	or	groupings	for	interacEon	

What	different	kinds	of	learning	outcomes	are	valuable	and	valued	
in	MOOCs?	

•  TradiEonal	learning	performance	of	compleEon	and	grades	
•  AlternaEve	view	as	ability	to	interact	knowledgably		
•  AddiEonal	perspecEves	possible	

What	kinds	of	ac8ons	and	interac8ons	should	be	happening	in	
MOOCs	(and	why)?		

•  QuesEons	and	connecEons	(focus	on	material	versus	self)	
•  Elaborated	threads,	repeat	engagement,	mix	social	+	content	
	

How We Addressed 
Key Conceptual 
Questions 



How	can	and	should	the	power	of	human	intellect	and	machine	
computa8on	be	brought	together	to	maximize	insight?		

•  Use	computaEon	to	idenEfy	where	in-depth	manual	analysis	is	
mostly	likely	to	be	valuable	

•  DIPTiC:	use	mulEple	measures	of	computaEon	with	humans	to	
resolve	discrepancy	to	make	most	effecEve	use	of	people-power	

•  Use	machine	learning	to	extend	applicability	of	human	codes	

How	can	we	handle	large	quan8ty	of	ac8vity	efficiently	while	
aeending	to	the	complexity	of	interac8on	and	learning	processes?	

•  Examine	model-idenEfied	linguisEc	features	used	in	context	
•  Probe	intact	threads	in	communiEes	flagged	by	SNA	to	generate	

in-depth	understanding	of	interacEon		
•  Consider	conceptual	implicaEons	of	technical	decisions	(e.g.	Ees)	

How We Addressed 
Key Methodological 
Questions 



Recommendations for 
the Future of MOOC 
Research 
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1.  	Conceptualize	the	diversity	that	openness	brings	as	a	
fundamental	aspect	of	MOOC	philosophy,	not	a	
problem	to	be	overcome	

2.  	Examine	applicability	of	exisEng	online	learning	
theories	in	the	context	of	massiveness	and	consider	
where	modificaEon	/	alternaEve	theories	are	needed	

3.  	Combine	human	intellect	and	machine	computaEon	
to	probe	complex	large	scale	learning	processes	

4.  	Make	sense	of	high-level	computaEonal	paPerns	
using	low-level	contextualized	data;	use	computaEonal	
methods	to	validate	small-scale	qualitaEve	findings	
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