

AI Artificial Intelligence Research Group

1

Towards Data Driven Group Formation Support in MOOCs

Ishari Amarasinghe Prof. Davinia Hernández-Leo & Prof. Anders Jonsson Universitat Pompeu Fabra 27/01/2017

INTRODUCTION

- Social Interactions leads to learning (Hurst et al., 2013)
- Even in MOOCs with limited attention of the educator (Brinton et al., 2014)
- Collaboration Space Grid with examples (Manathunga et al., submitted)

INTRODUCTION

- Social Interactions leads to Learning (Hurst et al., 2013)
- Even in MOOCs with limited attention of the educator (Brinton et al., 2014)
- Collaboration Space Grid with examples (Manathunga et al., submitted)

PROBLEM STATEMENT

• What is the criteria used / can be used to form these groupings?

Collaboration Technique	Grouping Criteria
Study Groups	Based on Time
Pyramid Activity	Based on Time Random Allocation
Meetups	Self Organization

Lack of Pedagogical Intentions

SUGGESTIONS FROM CSCL LITERATURE

- Literature on Computer Supported Collaborative Learning (CSCL) suggests:
 - Homogeneous Groups (Esposito, 1973)
 - Heterogeneous Groups (Dillenbourg et al., 1995)

- Benefits
 - Increased level of participation (Kardan and Sadeghi, 2014)
 - Richer interactions Opposite / Complementary point of view (Dillenbourg and Tchounikine, 2007)

OUR APPROACH

Learning Analytics + Constraint Optimization

OUR APPROACH

Learning Analytics

+

Useful hints on Group Formation Criteria

Constraint Optimization

Suggestions for Groupings

OUR APPROACH

IGroups System high level design (Amarasinghe et al., submitted)

POSSIBLE SCENARIOS

- Study Groups in Future Learn Platform
 - Course Participants Background Programming vs. Design Oriented

- Pyramid Activity in Future Learn Platform
 - Language Preferences for Communication
 - Argumentation Skills / Level of Activity / Diversity of Opinions

PROBLEM FORMULATION

subject to

$$\sum_{k=1}^{T} X_{ik} = 1 \quad \forall i \in \{1, ..., N\}$$
$$\sum_{i=1}^{N} X_{ik} \ge G \quad \forall k \in \{1, ..., T\}$$

Proposed Group Formation Approach (Amarasinghe et al., submitted)

10

PROBLEM FORMULATION

Example 1:

Heterogeneous Groups considering Background Knowledge Levels

C_ij = 0, if student i and j have different background knowledge levels

C_ij = 1, if student i and j have similar background knowledge levels

Example 2:

Similar Knowledge Levels and Different Age Groups (Promotes both homogeneity and heterogeneity at the same time)

C_ij = 0, if student i and j have similar knowledge levels and belong to different age categories

C_ij = 2 if student i and j have different knowledge levels and belong to same age category $C_ij = 1$, otherwise (i.e., i and j differ in one parameter not the other)

Towards Data Driven Group Formation Support in MOOCs

REFERENCES

- Amarasinghe, I., Hernández-Leo, D., and Jonsson, A., 2017. Towards Data Informed Group Formation Support Across Learning Spaces, Submitted to [2nd International Workshop on Learning Analytics Across Physical and Digital Spaces- Cross-LAK 2017]
- Amarasinghe, I., Hernández-Leo, D., and Jonsson, A., 2017. Intelligent Group Formation in Computer Supported COllaborative Learning, Submitted to [The 17th IEEE International Conference on Advanced Learning Technologies ICALT 2017]
- Dillenbourg, P., Baker, M.J., Blaye, A. and O'Malley, C., 1995. The evolution of research on collaborative learning.
- Dillenbourg, P., & Tchounikine, P. (2007). Flexibility in macro-scripts for computer-supported collaborative learning. Journal of computer assisted learning, 23(1), 1-13.
- Kardan, A.A. and Sadeghi, H., 2014, February. Modeling the learner group formation problem in computer-supported collaborative learning using mathematical programming. In *e-Learning and e-Teaching (ICeLeT), 2014 8th National and 5th International Conference on* (pp. 1-5). IEEE.
- Esposito, D., 1973. Homogeneous and Heterogeneous Ability Grouping: Principal Findings and Implications for Evaluating and Designing More Effective Educational Environments 1. *Review of Educational Research*, *43*(2), pp.163-179.
- Brinton, C.G., Chiang, M., Jain, S., Lam, H., Liu, Z. and Wong, F.M.F., 2014. Learning about social learning in MOOCs: From statistical analysis to generative model. *IEEE transactions on Learning Technologies*, 7(4), pp.346-359.
- Hurst, B., Wallace, R. and Nixon, S., 2013. The impact of social interaction on student learning. *Reading Horizons (Online)*, 52(4), p.375.