What you will study
This module is based around six books with each one developing a particular topic in pure mathematics. A feature of the module is that we identify a core route through each book. This is designed to help time-poor students to identify material necessary to understand later parts of the module. It is possible to follow the core route for some weeks and the standard route for others. Following the core route through the whole module should enable you to pass but may not enable you to gain the higher grades.
Number Theory
In the first book we study the integers and prime numbers. In particular we look at classical problems that require integer solutions. For example finding all integer solutions to the equation 2x + 11y = 5. We also develop methods for solving linear congruences such as ax ≡ b (mod n) and in the final chapter we study the classical theorems of Fermat and Wilson.
Groups
In the second book we consolidate and build on the group theory presented at level 2 of our curriculum in Pure mathematics (M208). The book leads up to the classification of all finite abelian groups and ends with an introduction to the problem of classifying groups that are not abelian. On completion you will be able to use the Sylow Theorems to analyse the structure of appropriate finite groups.
Numbers and Rings
In the first half of this book we consider the solution of quadratic congruences, ax2 ≡ b (mod n). In the second half we use our knowledge of the integers to define and study the abstract algebraic structures known as rings.
Metric Spaces I
In this book motivated by our understanding of how distance works for points in the plane, we define metrics, which can be used to give us an idea of distance between arbitrary objects (such as words or fractals). This allows to generalise the notion of what it means for a function to be continuous.
Rings and Fields
In this book we return to our study of algebra. We start by looking at polynomial rings and then continue our investigation of abstract algebraic structures. This unexpectedly leads to the resolution of some famous problems of antiquity such as ‘squaring the circle’ or ‘trisecting the angle’. The final chapter shows how algebraic ideas underlie the modern theory of cryptography.
Metric Spaces II
In this book we return to metric spaces. We look at the implications of our new definition of distance for understanding what it means for something to be connected. This book culminates in an introduction to the theory of fractals.
There is a non-assessed reader on the module website that provides an overview of the historical development of topological and metric spaces, and modern algebra. Where appropriate the reader includes information and/or links about modern applications and unsolved/recently solved problems.
You can find the full content list on the Open mathematics and statistics website.
Professional recognition
This module may help you to gain membership of the Institute of Mathematics and its Applications (IMA). For further information, see the IMA website.