England.  Change location

Remote experiments in physics and space

This practical module comprises three live experiments collecting data from remote equipment, from an optical telescope in Tenerife to infrared and X-ray spectrometers based in Milton Keynes. Investigations cover aspects as diverse as the analysis of star clusters, estimation of the charge-to-mass ratio of the electron and analysis of planetary atmospheres. The module builds your expertise in practical investigation, experimental design, hypothesis testing, data processing and report writing. A key skill you’ll develop is using Python programming for processing, plotting and data analysis.

Modules count towards OU qualifications

OU qualifications are modular in structure; the credits from this undergraduate module could count towards a certificate of higher education, diploma of higher education, foundation degree or honours degree.

Browse qualifications in related subjects


Module code




  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.

Study level

Across the UK, there are two parallel frameworks for higher education qualifications, the Framework for Higher Education Qualifications in England, Northern Ireland and Wales (FHEQ) and the Scottish Credit and Qualifications Framework (SCQF). These define a hierarchy of levels and describe the achievement expected at each level. The information provided shows how OU module levels correspond to these frameworks.
Level of Study
2 9 5

Study method

Module cost

Entry requirements

Student Reviews

First off I would like to say this is a fantastic module that gives you good hands on practical experience....
Read more

Thank you for the positive comments on the experimental work in SXPS288, and for the feedback on the programming element....
Read more

Request your prospectus

Explore our subjects and courses

Request your copy now

What you will study

You’ll conduct three remote experiments (working in small groups of 2–5) to control the hardware and collect data. You’ll learn to process your data with Python, interpret the results and write up your work as technical reports.

Remote investigations parallel the way many modern scientific investigations are conducted. It’s no longer necessary to travel to a remote mountaintop to use the latest telescope – instead, you can book time and control equipment remotely. Space-based explorations such as a space telescope or Mars rover are also operated remotely. The remote experimentation skills you’ll develop in this module are directly relevant to building your employability in the STEM sector.

Cooperation and group work are also characteristic features of research and commercial activity. Large-scale enterprises like the Large Hadron Collider or the Mars Curiosity rover can operate only if many people work together. By working with fellow students and supported by research experts, you’ll achieve more than any one person working alone. You’ll develop vital employability skills in communication, collaboration and professional team working.

You’ll find more details on each of the live experimental components are below:

Astronomy: Exploring the Milky Way
In this investigation, you’ll use an optical telescope (PIRATE or COAST) to investigate the properties of star clusters found in different parts of our galaxy, the Milky Way. You’ll obtain optical photometry in two wavebands of open and globular star clusters, from which you’ll compile colour-magnitude diagrams to estimate properties such as the ages and distances of the clusters.

You’ll typically work in a group with four other students, supported by experts in optical astronomy and the use of robotic telescopes.

You must choose from the two options (Observer mode or Queue-scheduled mode) at the start of the module. We’ll provide complete descriptions of both modes and a discussion forum to help you choose. Places for Observer mode may be limited, so book early to maximise your chances of getting an observing session if this is your preferred choice.

Physics: Electron–photon interactions
This activity, about charged particles and radiation, is split into two investigations.

In the first investigation, you’ll use an interactive screen experiment (ISE) to measure the deflection of a beam of electrons in a magnetic field. You’ll use this to measure a fundamental property of the electron – its charge to mass ratio.

The second investigation is a live experiment in which you’ll use remotely controlled apparatus in a lab at the OU campus. You’ll investigate the process of Compton scattering – the interaction of X-ray photons with individual electrons. During your studies of the Compton effect, you’ll be recreating a Nobel Prize-winning experiment and confirming a fundamental result in quantum mechanics.

This activity will develop your skills in conducting practical investigations including calibration of equipment, handling of experimental errors and the presentation and interpretation of results.

Planetary science: Exploring Mars’s atmosphere and surface environments
This investigation is centred around an imagined space mission to Mars. In the first phase, you’ll carry out a live experiment using infrared spectroscopy to quantitively and qualitatively characterise the properties of planetary atmospheres. You’ll be making use of technology designed by researchers at the OU and flown on the European Space Agency’s Rosetta mission.

The second part of the investigation concerns geological processes on planetary surfaces. Using genuine data from NASA’s Mars rovers, you’ll learn how to process and extract information from public domain datasets. You’ll use this to model processes such as the production and evolution of the atmosphere and surface features of another planet.

Team project: Designing a future space mission
Towards the end of the module, you’ll complete a short team-based project involving the design of a future space mission. This activity will build on your knowledge of experimental design, instrumentation, and team working. You’ll work collaboratively with your team using a variety of communication methods, including scheduled online forums.

You will learn

The practical skills developed in this module include (but are not limited to):

  • experimental design and hypothesis testing
  • data handling, including computer programming for data analysis (Python)
  • planning and conducting observations and experiments
  • data presentation
  • lab safety
  • professional team working
  • report writing.

Vocational relevance

Many of the practical skills you’ll develop in this module are highly sought after by employers. These transferable skills can be applied in many different scientific or commercial settings, especially to the rapidly expanding data analysis and space sectors.

Teaching and assessment

Support from your tutor

Throughout your module studies, you’ll get help and support from your assigned module tutor. They’ll help you by:

  • Marking your assignments (TMAs) and providing detailed feedback for you to improve.
  • Guiding you to additional learning resources.
  • Providing individual guidance, whether that’s for general study skills or specific module content.
  • Facilitating online discussions between your fellow students, in the dedicated module and tutor group forums.

Module tutors also run online tutorials throughout the module. Where possible, recordings of online tutorials will be made available to students. While these tutorials won’t be compulsory for you to complete the module, you’re strongly encouraged to take part.


You can find the assessment details for this module in the facts box.

Future availability

Remote experiments in physics and space (SXPS288) starts once a year – in October.

This page describes the module that will start in October 2024.

We expect it to start for the last time in October 2026.


As a student of The Open University, you should be aware of the content of the academic regulations which are available on our Student Policies and Regulations website.

Course work includes:

3 Tutor-marked assignments (TMAs)
End-of-module assessment

Entry requirements

There are no formal entry requirements for this module.

At The Open University, we believe education should be open to all, so we provide high-quality university education to anyone who wishes to realise their ambitions and fulfil their potential.

Even though there are no entry requirements, you’ll need appropriate knowledge of mathematics and physics obtained through:

  • OU level 1 and 2 study
  • equivalent work at another higher education institution.

Are you ready for SXPS288?

Preparatory work

We recommend you’ve completed:

The following are also helpful but not essential:

Computer programming experience using Python or a similar language may also be beneficial.


Start End England fee Register
05 Oct 2024 Jun 2025 £1818.00

Registration closes 05/09/24 (places subject to availability)

This module is expected to start for the last time in October 2026.

Additional Costs

Study costs

There may be extra costs on top of the tuition fee, such as set books, a computer and internet access.

If your income is not more than £25,000 or you receive a qualifying benefit, you might be eligible for help with some of these costs after your module has started.

Ways to pay for this module

Open University Student Budget Account

The Open University Student Budget Accounts Ltd (OUSBA) offers a convenient 'pay as you go' option to pay your OU fees, which is a secure, quick and easy way to pay. Please note that The Open University works exclusively with OUSBA and is not able to offer you credit facilities from any other provider. All credit is subject to status and proof that you can afford the repayments.

You pay the OU through OUSBA in one of the following ways:

  • Register now, pay later – OUSBA pays your module fee direct to the OU. You then repay OUSBA interest-free and in full just before your module starts. 0% APR representative. This option could give you the extra time you may need to secure the funding to repay OUSBA.
  • Pay by instalments – OUSBA calculates your monthly fee and number of instalments based on the cost of the module you are studying. APR 5.1% representative.

Joint loan applications

If you feel you would be unable to obtain an OUSBA loan on your own due to credit history or affordability issues, OUSBA offers the option to apply for a joint loan application with a third party. For example, your husband, wife, partner, parent, sibling or friend. In such cases, OUSBA will be required to carry out additional affordability checks separately and/or collectively for both joint applicants who will be jointly and severally liable for loan repayments.

As additional affordability checks are required when processing joint loan applications, unfortunately, an instant decision cannot be given. On average the processing time for a joint loan application is five working days from receipt of the required documentation.

Read more about Open University Student Budget Accounts (OUSBA).

Employer sponsorship

Studying with The Open University can boost your employability. OU courses are recognised and respected by employers for their excellence and the commitment they take to complete. They also value the skills that students learn and can apply in the workplace.

More than one in ten OU students are sponsored by their employer, and over 30,000 employers have used the OU to develop staff so far. If the module you’ve chosen is geared towards your job or developing your career, you could approach your employer to see if they will sponsor you by paying some or all of the fees. 

  • Your employer just needs to complete a simple form to confirm how much they will be paying and we will invoice them.
  • You won’t need to get your employer to complete the form until after you’ve chosen your module.  

Credit/debit card

You can pay part or all of your tuition fees upfront with a debit or credit card when you register for each module. 

We accept American Express, Mastercard, Visa and Visa Electron. 

Mixed payments

We know that sometimes you may want to combine payment options. For example, you may wish to pay part of your tuition fee with a debit card and pay the remainder in instalments through an Open University Student Budget Account (OUSBA).

Please note: your permanent address/domicile will affect your fee status and, therefore, the fees you are charged and any financial support available to you. The fee information provided here is valid for modules starting before 31 July 2025. Fees typically increase annually. For further information about the University's fee policy, visit our Fee Rules

This information was provided on 23/07/2024.

Can you study an Access module for free?

Depending on eligibility and availability of places, you could apply to study your Access module for free.

To qualify, you must:

  1. be resident in England
  2. have a household income of not more than £25,000 (or be in receipt of a qualifying benefit)
  3. have not completed one year or more on any full-time undergraduate programme at FHEQ level 4 or above or successfully completed 30 credits or more of OU study within the last 10 years

How to apply to study an Access module for free

Once you've started the registration process, either online or over the phone, we'll contact you about your payment options. This will include instructions on how you can apply to study for free if you are eligible and funded places are still available.

If you're unsure if you meet the criteria to study for free, you can check with one of our friendly advisers on +44 (0)300 303 0069, or you can request a call back.

Not eligible to study for free?

Don't worry! We offer a choice of flexible ways to help spread the cost of your Access module. The most popular options include:

  • monthly payments through OUSBA
  • part-time tuition fee loan (you'll need to be registered on a qualification for this option)

To explore all the options available to you, visit Fees and Funding.

What's included

You’ll have access to a module website, which includes:

  • a week-by-week study planner
  • course-specific module materials
  • audio and video content
  • assessment details and submission section
  • online tutorial access.

You’ll also have access to the OpenScience laboratory where you will conduct your online experiments.

Some of the live interactive experiments and activities will direct you to third-party websites outside of the Open University.

You will need

  • A digital camera or scanner to record images of your work (recommended, but not essential)

Computing requirements

You’ll need broadband internet access and a desktop or laptop computer with an up-to-date version of Windows (10 or 11) or macOS Ventura or higher.

Any additional software will be provided or is generally freely available.

To join in spoken conversations in tutorials, we recommend a wired headset (headphones/earphones with a built-in microphone).

Our module websites comply with web standards, and any modern browser is suitable for most activities.

Our OU Study mobile app will operate on all current, supported versions of Android and iOS. It’s not available on Kindle.

It’s also possible to access some module materials on a mobile phone, tablet device or Chromebook. However, as you may be asked to install additional software or use certain applications, you’ll also require a desktop or laptop, as described above.

If you have a disability

The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying SXPS288 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

To find out more about what kind of support and adjustments might be available, contact us or visit our disability support pages.