What you will study
Mechanical engineering: computer-aided engineering (T329) introduces and develops an understanding of the typical three elements included in CAE (computer-aided engineering):
- finite element analysis (FEA)
- multibody dynamics (MBD)
- computational fluid dynamics (CFD).
All run from a single software package: ANSYS Workbench.
The module comprises three parts, each concentrating on a different CAE element:
Part 1: Computer-aided design and finite element analysis
This part begins with a slight detour in the form of an introduction to computer-aided design. This short foray will show you how models are drawn and assembled before they can be analysed using any of the tools. You’ll then move on to analysing these models using the finite element part of the software package, allowing you to discover how these models would behave in different scenarios. There is then a theoretical section so you understand what the software is doing and how it does it, which will provide a solid foundation for interpreting problems and results. Validating results in one way or another is vital for using any modelling with confidence. So, towards the end of this section, you’ll 3D-print a part you designed and test it to see if it behaves as your model predicts.
Part 2: Mechanisms and multibody dynamics
In this part, you’ll learn about mechanisms in engineering and how to model them – both analytically and computationally through the multibody dynamics (MBD) functionality in ANSYS. You’ll begin by examining some simple, familiar systems made from simple joints and exploring their behaviour through the MBD software. The module then introduces kinematic analysis, allowing these simpler systems’ displacement and velocity to be analysed and compared to the results from the MBD. It then tackles more complicated situations that would be impractical to solve by hand. Finally, you’ll move on to gears, belts and pulleys and how they interact with the systems containing them.
Part 3: Computational fluid dynamics
The third part introduces the computational fluid dynamics (CFD) package in ANSYS. It begins with a general overview of the technique with many application examples of CFD. You’ll learn the fundamentals behind CFD programs and about fluid flow more generally, including the Navier–Stokes equations. Following this, you’ll focus on the flow around wind turbines, paying particular attention to boundary layers. You’ll then move on to considering oscillatory flow, vortex shedding and compressibility. During this part, you’ll also have the chance to control a wind tunnel to compare a physical model with the virtual one in the software.
You will learn
You’ll learn how CAE software works and what it can do, along with its limitations, assumptions and how to validate the output.