England.  Change location

Cosmology and the distant Universe

This module introduces the science of cosmology, which aims to answer fundamental questions about the nature, history and future of the Universe. You’ll develop skills to use the mathematical tools and physical models needed to describe the Universe on the largest scales and examine how today’s stars and galaxies came to exist. You’ll also explore a variety of phenomena of the distant Universe, from the earliest galaxies to black-hole jets and gamma-ray bursts. You’ll use a range of observational evidence to test theoretical ideas throughout the module; at times, you’ll come up against the limits of our current understanding.

What you will study

The module introduces the fundamental concepts of modern cosmology and selected topics in extragalactic astrophysics. You’ll develop skills in applying the ideas of cosmology and the astrophysics of the distant Universe through problem-solving and using and interpreting observational evidence. You’ll explore how this evidence supports current theories about the Universe and its evolution, understanding current open questions and the limitations of our knowledge.

The module comprises two printed books, supporting practical activities and online content.

Book 1 Cosmology provides a thorough introduction to modern cosmology, beginning with an overview of current understanding to provide context for the more specialised topics that follow. You’ll then explore the basic concepts and mathematical language of special and general relativity, learning how these underpin our ability to describe the geometry of the Universe. The module introduces the metric describing the geometry of the Universe and the Friedmann equations that describe its expansion. You’ll learn how a small set of cosmological parameters define spacetime’s past and future evolution, then explore the key observational evidence supporting the current model and how observations measure these fundamental parameters. In later parts, you’ll follow a history of the Universe from the earliest particle interactions to the formation of structure via gravitational collapse and, eventually, the birth of stars and galaxies.

Three Python-based practical activities support Book 1 Cosmology, providing hands-on experience working with cosmological models and observations.

Book 2 The Distant Universe provides a series of in-depth study topics in extragalactic astrophysics, linked to each other and Book 1 by themes of relativity and the interaction of matter and radiation. You’ll examine how we find and study the first galaxies and learn about their impact on their surroundings. You’ll then consider in more depth how to use the technique of gravitational lensing – the bending of light by massive objects – to learn about distant galaxies and more nearby objects. You’ll also learn about the dynamic processes in the Universe’s most massive structures, galaxy clusters. Finally, the module introduces the topic of high-energy astrophysics; you’ll learn about observations and models of extreme phenomena, including jets from supermassive black holes and gamma-ray bursts.

Two further Python-based practical activities support Book 2 The Distant Universe.

You will learn

You’ll build on your mathematical, physics and astronomy knowledge to further develop your understanding of fundamental concepts in physics and astronomy in the specific context of cosmology and astrophysical phenomena associated with the distant Universe.

Entry requirements

There are no formal entry requirements to study this module.

However, you’ll need appropriate knowledge of mathematics and physics. You’d normally prepare by having passed:

Are you ready for S385?

Preparatory work

This module includes Python coding activities, which assume a good computing ability. If you’ve passed SXPS288, your coding experience should be appropriate. Otherwise, we recommend you undertake some Python preparation – once registered, you can access the ‘Programming for Physical Sciences’ resource page with self-study material.

What's included

We provide two printed module books.

You’ll also have access to a module website, which includes:

  • a week-by-week study planner
  • course-specific module materials
  • audio and video content
  • assignment details and submission section
  • online tutorial access.

You will need

A scientific calculator or equivalent capability.

Computing requirements

You’ll need broadband internet access and a desktop or laptop computer with an up-to-date version of Windows (10 or 11) or macOS Monterey or higher.

Any additional software will be provided or is generally freely available.

To join in spoken conversations in tutorials, we recommend a wired headset (headphones/earphones with a built-in microphone).

Our module websites comply with web standards, and any modern browser is suitable for most activities.

Our OU Study mobile app will operate on all current, supported versions of Android and iOS. It’s not available on Kindle.

It’s also possible to access some module materials on a mobile phone, tablet device or Chromebook. However, as you may be asked to install additional software or use certain applications, you’ll also require a desktop or laptop, as described above.

Teaching and assessment

Support from your tutor

Throughout your module studies, you’ll get help and support from your assigned module tutor. They’ll help you by:

  • Marking your assignments (TMAs) and providing detailed feedback for you to improve.
  • Guiding you to additional learning resources.
  • Providing individual guidance, whether that’s for general study skills or specific module content.
  • Facilitating online discussions between your fellow students, in the dedicated module and tutor group forums.

Module tutors also run online tutorials throughout the module. Where possible, recordings of online tutorials will be made available to students. While these tutorials won’t be compulsory for you to complete the module, you’re strongly encouraged to take part.

Assessment

The assessment details for this module can be found in the facts box.

If you have a disability

The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying S385 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

Future availability

Cosmology and the distant Universe (S385) starts once a year – in October.

This page describes the module that will start in October 2024.

We expect it to start for the last time in October 2030.

Course work includes:

4 Tutor-marked assignments (TMAs)
Examination