The Cuban Biotechnology: Innovation and universal health care

Andrés Cárdenas O´Farrill
University of Bremen
Innovation & Inequality Workshop
15, 16 May 2010, Pisa, Italy

University of Bremen
Outline
1. Cuban based health biotechnology
2. State as insurer
3. Commitment to primary care
4. External linkages
5. Challenges
6. Essential points
Cuban-based health biotechnology

• 300 biotechnology centers

• Western Havanna Biocluster employs 12,000 workers and more than 7,000 scientists and engineers

• 500 patent applications in 2003
 Source: Thorsteinsdóttir et al. 2004, Nature Biotechnology

• Exports to more than 50 countries

• 100 million dollars a year in export earnings
 Source: Kaplan W, Laing R (2005), World Bank
Cuban-based health biotechnology

• Relevant products
 - World’s first vaccine against meningitis B (WIPO Gold Medal 1989)
 - PPG: To treat cardiovascular diseases (WIPO Gold Medal 1996)
 - Hepatitis B vaccine* (pre-qualified for purchase by the WHO in 2001)
 - World's first synthetic vaccine against Haemophilus influenzae type b (WIPO Gold Medal 2005)
 - Surfacen: To treat infant respiratory distress syndrome (WIPO Gold Medal 2007)

Cuban-based health biotechnology
- Diramic (WIPO Gold Medal 2007)
Cuban-based health biotechnology

- Cuban biotechnology integrated into development strategy

- Science as a means of reducing inequality

- Cuban Biotech integrated into the health system

- It covers 80% of the domestic demand
Health indicators

Infant mortality and gross national product (GNP) in selected Latin American countries and the United States, 2003

Source: Cooper et al. (2006)
Inequality and Innovation

• State as insurer

• Commitment to primary care

• External linkages
The State as insurer

• Effective mechanism of social compensation.

• Social justice as precondition of economic and technological development.

• Two main components: Universal healthcare and universal education.
The State as insurer

• Public and universal health care system
 - To maintain a healthy population as a political objective
 - State financial commitment
 - Insurance function
The State as insurer
Public expenditure in the domestic budget

The State as insurer

- Creation of a knowledge base: Creation of an educated and skilled population
 - Literacy campaign (1960-61)
 - Sustained and high levels of investment in education (10% of GDP > 6% recommended by UNESCO)
 - Universal education (2,3 millions students in the whole educational system 2002*, adult literacy rate: 100% 2003-2008, Primary school net enrolment/attendance: 98% 2003-2008)
 - Public research institutions and universities (58 universities)

Source: World Bank 2000, UNESCO

The State as insurer

• Creation of a knowledge base (biomedical research)
 - National Centre for Scientific Research (1965)
 - Institutions in the biomedical field during the 80’s
 - Centre for Biological Research (1981)
 - Centre for Genetic Engineering and Biotechnology (1986)
 - Centre for Immunoassay (1987)
The State as insurer

• 1 Billion US$ invested in the Biotechnology during 1990-1996

• Program of import substitution covering 422 products implemented

The State as insurer

Summary

• Rapid increase of biomedical research

• Development of new ideas and products

• Social policy-based infrastructure as a strategic asset
Commitment to primary care

• Family doctors network
 - Serve approx. 150 families in the community surrounding the clinics
 - Deal with 80% of the health problems
 - New medical school curriculum based on primary health care (health promotion and disease prevention)
 - Doctor integrated in the community
Commitment to primary care

• Family doctor directly linked to the health system
Commitment to primary care

- Family doctors provide information for clinical trials to the health system based National Coordinating Center of Clinical Trials
Commitment to primary care

Summary

• Comprehensive national records

• Improved resource allocation

• Socially productive innovation
External linkages

• Building scientific capacity: Curie Institute (Paris), Pasteur Institute (Paris), Heidelberg University (Heidelberg, Germany), Harvard University (Cambridge, MA, USA)

• Promotion of technological learning (Interferon served as the model product for Cuban biotechnology)
External linkages

Percentage of firms in international health biotech collaboration, comparing South-South with North-South

Source: Melon et. al. (2009), Nature Biotechnology, 27
External linkages

• South-south cooperation(1)

Technology transfer:
- Biocon BioPharmaceuticals Ltd. (BBPL) in India
- Biotech Pharmaceutical Co. Ltd. in China
- Delta Laboratories in Colombia
- Eurofarma Laboratorios Ltda in Brazil
- Ferozsons Labs in Pakistan
- Innogene Kalbiotech in Indonesia
- Laboratorio Elea S.A.C.I.F.yA in Argentina
- Laboratorios PiSA in Mexico
- Eske Group in Peru
External linkages

Technology Transfer Projects CIGB (2008)

University of Bremen
External linkages

• South-south cooperation(2)
 - Export of medical services: 2006, 28,664 Cuban health professionals were serving abroad in 68 countries.

 - Cuba’s Comprehensive Health Program: 27 countries in Latin America, the Caribbean, Africa and Asia (since 1998)

 - Four cooperation programs since 2000: 1) joint projects in prevention and treatment of HIV in 19 countries, 2) Cuba-Venezuela bilateral agreement “oil for doctors”, 3) vision restoration program in 27 Third World countries, 4) Disaster Response Contingent (since 2005)

 - The Latin American Medical School (opened since 1999)
External linkages

Summary

• South-South cooperation brings prestige and influence

• Networks with other institutions

• Access to foreign markets

• Data collection for new products.
Challenges

• American Embargo (the longest in modern history)

• Medical diplomacy makes a few enemies

• Potential strains in the Cuban health system

• Ageing population
Essential points

Inequality must not be a necessary outcome of innovation

• Placing social policy at the centre of the development policy

• Building social institutions based on universality and solidarity

• Building internal and external networks
Thanks
Just in case
The State as insurer
Public and private expenditure on educational institutions, 2005

The State as insurer

- Health care expenditures increased during the crisis

2000 6.6 %

<table>
<thead>
<tr>
<th>Year</th>
<th>Health Budget*</th>
<th>Per Inhabitant</th>
<th>% of GDP</th>
<th>% of Natl. Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1,045.1</td>
<td>98.6</td>
<td>5.3</td>
<td>7.4</td>
</tr>
<tr>
<td>1995</td>
<td>1,221.9</td>
<td>111.3</td>
<td>5.8</td>
<td>8.8</td>
</tr>
<tr>
<td>1998</td>
<td>1,473.1</td>
<td>132.4</td>
<td>6.4</td>
<td>13.1</td>
</tr>
</tbody>
</table>

*in millions of Cuban pesos
The State as insurer

- Education expenditures increased during the crisis

Data from: Gasperini (2000), World Bank
Cuban-based health biotechnology

CIGB Biomedical Project’s Pipeline 2010

<table>
<thead>
<tr>
<th>Project</th>
<th>Area</th>
<th>Discovery</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heberprot-P</td>
<td>Wound healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV vaccine (NASVAC)</td>
<td>Infectious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV vaccine (CIGB-230)</td>
<td>Infectious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-500 (Cytoprotective agent)</td>
<td>Cardiovascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEA recombinant antibody fragment (CIGB-M3)</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV vaccine</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate cancer vaccine</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-370 (anti-tumor agent)</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-166 (anti-VEGF antibody)</td>
<td>DMAE /Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-247 (VEGF vaccine)</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-552 (anti-tumor peptide)</td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue vaccine</td>
<td>Infectious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dengue anti-viral molecules</td>
<td>Infectious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGB-845 (neuro-protective agent)</td>
<td>Neurology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptide for Rheumatoid Arthritis</td>
<td>Autoimmunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: CIGB-Heber Biotech, Business Project Portfolio 2010
Cuban-based health biotechnology

Historical development of CIGB products approved for commercialization

<table>
<thead>
<tr>
<th>Year</th>
<th>Biotech product (generic name)</th>
<th>Indication(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hebertrans (leukocyte extract termed transfer factor)</td>
<td>Immune deficiencies, herpes and ataxia telangiectasia</td>
</tr>
<tr>
<td></td>
<td>Heberon alfa R (recombinant IFN-α2b)</td>
<td>Hepatitis C and cancer</td>
</tr>
<tr>
<td></td>
<td>Hebermin (recombinant EGF) produced in Escherichia coli</td>
<td>Burns and ulcers</td>
</tr>
<tr>
<td></td>
<td>Heberbiovac HB (recombinant HbsAg)</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>1991–2000</td>
<td>Heberkinasa (recombinant streptokinase)</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td></td>
<td>GAVAC (recombinant Bm86 protein vaccine)</td>
<td>Cattle tick (Boophilus microplus)</td>
</tr>
<tr>
<td></td>
<td>Heberon Gamma R (recombinant IFN-γ)</td>
<td>Juvenile rheumatoid arthritis</td>
</tr>
<tr>
<td>2001–2007</td>
<td>Quimi-Hib (Hib vaccine)</td>
<td>Pneumonia and meningitis</td>
</tr>
<tr>
<td></td>
<td>Bivalent ‘HB-Hib’ recombinant vaccine comprising HbsAg and Hib</td>
<td>Hepatitis B, pneumonia and meningitis</td>
</tr>
<tr>
<td></td>
<td>Trivac HB (tetravalent (DPT-HB) vaccine)</td>
<td>Diphtheria, tetanus, whooping cough and hepatitis B</td>
</tr>
<tr>
<td></td>
<td>Heberpenta (pentavalent (DPT-HB+Hib) vaccine)</td>
<td>As above plus Haemophilus influenzae meningitis</td>
</tr>
<tr>
<td></td>
<td>Heberviron (recombinant IFN-α2b and ribavirine)</td>
<td>Hepatitis C</td>
</tr>
<tr>
<td></td>
<td>Hebervital (recombinant granulocyte colony stimulating factor)</td>
<td>Leukopenia, neutropenia</td>
</tr>
<tr>
<td></td>
<td>Heberitro (recombinant erythropoietin-α)</td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td>HeberNem (Corynebacterium paurometabolum C924 strain)</td>
<td>Biological control of plant nematode infestation</td>
</tr>
<tr>
<td></td>
<td>Acusabio I (invertebrate and fish nutritional supplement containing a defined combination of amino acids)</td>
<td>Prevention of white spot disease</td>
</tr>
</tbody>
</table>

Table does not list new formulations of existing products, such as Heberbiovac HB, Heberon alfa R liquid without albumin, Heberon alfa R lyophilized without albumin, and Heberkinasa without albumin, Hebervis and Citoprot-P.

Source: Lopez et al (2007), NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER
Cuban-based health biotechnology
CIGB Biomedical Project's Pipeline 2010

<table>
<thead>
<tr>
<th>Company</th>
<th>Creation date</th>
<th>Number of workers</th>
<th>Extention (m²)</th>
<th>Commercial branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIGB</td>
<td>1986</td>
<td>1245</td>
<td>10000</td>
<td>Heber Biotec</td>
</tr>
<tr>
<td>CIM</td>
<td>1994</td>
<td>400</td>
<td>15000</td>
<td>CIMAB</td>
</tr>
<tr>
<td>Finlay Inst.</td>
<td>1991</td>
<td>920</td>
<td>23000</td>
<td>Vacunas Finlay</td>
</tr>
<tr>
<td>CENSA</td>
<td>1980</td>
<td>406</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>CNIC</td>
<td>1965</td>
<td>1193</td>
<td>35000</td>
<td>DALMER</td>
</tr>
<tr>
<td>CIREN</td>
<td>1989</td>
<td>309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE</td>
<td>1987</td>
<td>244</td>
<td>9000</td>
<td>Tecnosuma</td>
</tr>
<tr>
<td>CENPALAB</td>
<td>1982</td>
<td>414</td>
<td>74000</td>
<td></td>
</tr>
<tr>
<td>BIOCEN</td>
<td>1992</td>
<td>800</td>
<td>166000</td>
<td></td>
</tr>
<tr>
<td>CNC*</td>
<td>1990</td>
<td></td>
<td></td>
<td>Neuronic</td>
</tr>
</tbody>
</table>

Source: CIGB-Heber Biotech, Business Project Portfolio 2010
Cuban-based health biotechnology

- Complete name of the Centres
- CIGB: Centre for Genetic Engineering and Biotechnology
- CIM: Centre for Molecular Immunology
- Finlay Inst: Finlay Institute
- CENSA: National Centre for Animal and Plant Health
- CNIC: National Centre for Scientific Research
- CIREN: International Centre of Neurological Restoration
- CIE: Centre for Immunoassays
- CENPALAB: National Centre for Production of Laboratory Animals
- BIOCEN: National Centre for Bioproduction
- CNC: Centre for Neurosciences
Cuban-based health biotechnology

CIGB Patents 2009

Source: CIGB-Heber Biotech, Business Project Portfolio 2010
Cuban-based health biotechnology
CIGB Patents 2009

Source: CIGB-Heber Biotech, Business Project Portfolio 2010
Cuban-based health biotechnology

Figure 2: Number of papers in health biotechnology in Brazil and Cuba, 1991-2002
Source: Science-Metrix (data from Science Citation Index Expanded, ©Thomson ISI)

Source: Thorsteinsdóttir et al. (2005), Different Rhythms of Health Biotechnology Development in Brazil and Cuba, Journal of Business Chemistry
Commitment to primary care

- They encourage the acceptance of local health biotechnology by participating in clinical trials

Clinical Trial participants Centre for Molecular Immunology (CIM)

Source: Centre for the Study of the Cuban Economy (CEEC) 2008
Health indicators

<table>
<thead>
<tr>
<th></th>
<th>Infant mortality rate (per 1000 live births)</th>
<th>Life expectancy at birth</th>
<th>Under five mortality rate per 1000 live births</th>
<th>Per capita expenditure on health (2006) PPP int. $</th>
<th>Total expenditure as % of GDP(2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuba</td>
<td>5,3</td>
<td>79</td>
<td>8</td>
<td>674</td>
<td>7,7</td>
</tr>
<tr>
<td>Region of the Americas</td>
<td>11</td>
<td>76</td>
<td>19</td>
<td>2788</td>
<td>12,8</td>
</tr>
<tr>
<td>European Region</td>
<td>10</td>
<td>74</td>
<td>15</td>
<td>1719</td>
<td>8,4</td>
</tr>
<tr>
<td>High income group average</td>
<td>4</td>
<td>80</td>
<td>7</td>
<td>3848</td>
<td>11,2</td>
</tr>
<tr>
<td>Global average</td>
<td>28</td>
<td>68</td>
<td>67</td>
<td>790</td>
<td>8,7</td>
</tr>
</tbody>
</table>

Source: *World Bank, WHO Statistics 2009*
Health indicators

Incidence of meningitis in Cuba (1989-2006)

Source: Campa et. al (2007), MEDICC Review, Fall, Vol 9, No 1
Health indicators

In 2001, Cuba reached the goals the United States has set for 2010

<table>
<thead>
<tr>
<th>USA: Goals for 2010</th>
<th>Cuba: 2001 Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants 2-18 months 99%</td>
<td>Infants 2-18 months 99%</td>
</tr>
<tr>
<td>15-24 years 75-90%</td>
<td>15-24 years 94.5%</td>
</tr>
<tr>
<td>Prenatal Transmission 75%</td>
<td>Prenatal transmission 95%</td>
</tr>
<tr>
<td>Reduction by 2000, 61.9%</td>
<td>Reduction by 2001, 96-99%</td>
</tr>
</tbody>
</table>

Cuban Economy

Export of services

Cuban Economy

Budget deficit/GDP

University of Bremen
Cuban Economy

Structure of Cuban Exports