OPEN UNIVERSITY LIBRARY

Title : Science course unit 29. Clock title: Quantum theory. Contributors : M.J. Pentz F.R. Stannard PROGRAMME SEQUENCE LIST

CU S100/29 Tape No. 6LT/70087 Project No. 00520/1129 Date Recorded 7.9.1970 Form VTR

530.12 lst TX: 15.8.1971

Seq.	Time	Footage	Sequence List	Sound Cue
		100000	Sequence 225 c	
	1'15"		M.J. Pentz demonstrates the pressure of light on a gold foil suspended from a long quartz fibre in an evacuated glass vessel. The foil is made to oscillate by the light beam.	
1.	2'11"		M.J. Pentz performs an experiment to demonstrate the <u>photo-electric effect</u> . Photons of light are directed at a zinc plate setting up a measurable electric current which is monitored on a micro-ammeter.	537.54
	3'04"		Pentz places a sheet of glass between light source and zinc plate. No electric current is generated.	to do just that
	4'00"		F.R. Stannard with the apparatus which will provide the data for calculating <u>Planck's Constant</u> . The experiment will show how the intensity and frequency of light affect the photoelectric current and energies of emitted electrons.	Well this is a
2.	4'35"		Apparatus directs light of different wavelengths and intensity at a target. Stannard explains and demonstrates.	
	5'41"		Stannard holds a phototube and explains how it works. He uses a model of the tube to aid his explanation. The phototube is the target and sets up an electric current when bombarded with photons.	
	6'18"		Stannard demonstrates the effect of change of light intensity. Photocurrent drops as intensity is reduced.	

Producer: Nat Taylor,

CU S100/29 Page ...2...

OPEN UNIVERSITY LIBRARY

Continuation

PROGRAMME SEQUENCE LIST

				0011011111110101111
Seq.	Time	Footage	Sequence List	Sound Cue
	7'35"		Stannard used the phototube model to explain how electron energies can be calculated (electrons emitted from tube during photon bombardment).	
2.	9'03"		Stannard performs the experiment to calculate electron emission energy. He asks students to take down the readings. He then asks the students to determine Planck's Constant from the data they have.	determine Plack's constant
	•		Pentz considers electron diffraction as evidence for the wave-particle nature of light.	Well, its quite clear
			Pentz demonstrates <u>diffraction of</u> <u>photons</u> by placing a piece of silk over the lens of a T.V. camera which is looking at a light source.	
	11'30"		Shot of the light diffraction pattern which results.	535.4
3.	12155"		Stannard will use superimposed rule gratings and monochromatic light to study a more precise diffraction pattern. Shots of diffraction patterns of various colours of monochromatic light.	
	13'52"		Stannard explains, with the aid of a diagram, how electron diffraction patterns can be shown on a fluorescent screen.	
	16'48'		Film sequence showing Dr. Germer demonstrating electron diffraction by reflection on a crystal surface. This is the experiment by which electron diffraction was discovered in 1927 by <u>Davisson and Germer</u> in the U.S. and by <u>G.P. Thomson</u> in Britain.	Germer, Lester H.
	18'48"		Stannard does the electron diffraction experiment as done by Thomson. Thin metal foil is used as a target. The diffraction pattern of light is shown and then the pattern of high-energy electrons.	Thomson, G.P.
	20'21"		Stannard shows and explains the experimental apparatus.	

OPEN UNIVERSITY LIBRARY

PROGRAMME SEQUENCE LIST

Seq.	Time	Footage	Sequence List	Sound Cue
	21'15'		Electron diffraction patterns shown at various voltages. Pattern expands as voltage is decreased.	
			Stannard asks students to verify the de Broglie formula.	
	21'56"		Pentz and Stannard use extrance and exit through 2 doors as an analogue of a portion of the Youngs experiment. He asks students to think about this as part of a self-assessment test.	
4.	23144"		Credits	
4.	23'44"			