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Introduction
In order to successfully study one or both of the Open University’s Level 3

courses, S382 Astrophysics or S383 The Relativistic Universe, you should already

be familiar with various topics in cosmology, astronomy, planetary science,

physics and mathematics. The level of skills, knowledge and understanding that

we expect you to have when you embark on either of these courses is equivalent

to the end-points of the OU’s Level 2 courses: S282 Astronomy, S283 Planetary

Science and the Search for Life, SXR208 Observing the Universe, S207 The

Physical World and MST209 Mathematical Methods and Models.

To ascertain whether or not you meet the required level before embarking on S382

and/or S383 you should work through the document entitled Are You Ready For

S382 or S383? which is available from the Courses website. If, as a result of

attempting the questions in that document, you realise that you need to revise your

skills, knowledge and understanding in certain areas of mathematics, physics,

cosmology, astronomy and planetary science, then you should study the relevant

chapters of this document carefully.

There are five main chapters to this document – one each to introduce the

astronomy and planetary science, the cosmology and the physics background,

plus two chapters of mathematics. It is important to note that, because most of this

document revisits concepts and phenomena that are covered in detail in Level 2

Open University courses, the treatment here is much less rigorous than in the

courses themselves. For the most part, the subjects covered here are merely

presented to you rather than developed gradually through detailed argument. This

is to enable you to get rapidly ‘to the point’ and appreciate the key information

you need in order to understand what follows, and to allow you to progress

quickly to the main substance of the Level 3 courses.
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Chapter 1 Manipulating numbers
and symbols

Introduction

In this chapter, we will concentrate on the various rules for manipulating numbers

and algebraic symbols, including how to manipulate equations containing

fractions, powers, logarithms and trigonometric functions, and how to deal with

vectors and matrices.

1.1 Algebra and physical quantities

Physical quantities, such as mass and position, are commonly represented by

algebraic symbols such as m or x. Whenever such symbols are used, it should be

recalled that they comprise two parts: a numerical value and an appropriate unit of

measurement, such as m = 3.4 kg or x = 6.0 m. The units will generally be

internationally recognized SI units, although in astrophysics and cosmology, cgs

units and other less conventional units are used where convenient.

Quantities may be combined using the standard operations of addition (+),

subtraction (−), multiplication (×) or division (/ or ÷). Note that the order of

addition or multiplication is not important; i.e. a+ b = b+ a, and a× b = b× a,

but the order of subtraction and division is; i.e. a− b 6= b− a, and a/b 6= b/a.

Whenever quantities are combined, their units are combined in the same way. For

example, if p = mv, where mass m is measured in kg and speed v is measured

in metres per second (m/s or m s−1), then their product p will have units of

kilograms times metres per second, or kg m s−1, pronounced ‘kilogram metres

per second’. If two quantities are to be added or subtracted, then they must have

the same units. (Unit analysis is discussed in Section 1.4.)

Both lower case and upper case letters are used as algebraic symbols, and in

general will represent different quantities with different units. For instance, g
is often used to represent the acceleration due to gravity near to the Earth’s

surface (9.81 m s−2), whilst G is the universal gravitational constant

(6.67 × 10−11 N m2 kg−2). Note also that (upper and lower case) Greek letters

are frequently used as symbols for physical quantities. You will soon become

familiar with the letters that are commonly used.

1.1.1 Manipulating algebraic expressions

The most important rule to note when manipulating algebraic expressions is:

Algebraic symbols are manipulated in the same way as pure numbers and

algebraic fractions are manipulated in exactly the same way as numerical

fractions.

7



Chapter 1 Manipulating numbers and symbols

The following examples illustrate some of the rules of manipulating algebraic

expressions. To multiply one bracket by another, multiply each term in the

right-hand bracket by each term in the left-hand one, taking careful account of the

signs, as in the following two cases:

(a+ b)(c + d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd

(a+ b)(a− b) = a(a− b) + b(a− b) = a2 − ab+ ba− b2 = a2 − b2

Exercise 1.1 Multiply out the following expressions to eliminate the brackets.

(a) t[2− (k/t2)] (b) (a− 2b)2

n

To multiply fractions, multiply the numerators (top lines) together and then

multiply the denominators (bottom lines) together. For example, 2
3 × 3

4 = 6
12 = 1

2 .

So in general,

a

b
× c

d
=
ac

bd
(1.1)

To divide by a fraction, multiply by its reciprocal (i.e. by the fraction turned

upside down). For example, 1
3 ÷ 1

6 = 1
3 × 6

1 = 2. So in general,

a/b

c/d
=
a

b
÷ c

d
=
a

b
× d

c
=
ad

bc
(1.2)

In order to add or subtract two fractions, it is necessary for them both to have the

same denominator. In numerical work, it is usually convenient to pick the smallest

possible number for this denominator (the lowest common denominator), for

example,

1

3
− 1

6
=

2

6
− 1

6
=

2− 1

6
=

1

6

If the lowest common denominator is not easy to spot, you can always multiply

the top and bottom of the first fraction by the denominator of the second fraction,

and the top and bottom of the second fraction by the denominator of the first, for

example,

1

3
− 1

6
=

1× 6

3× 6
− 1× 3

6× 3
=

6

18
− 3

18
=

3

18
=

1

6

This is the method to apply to algebraic fractions:

1

a
+

1

b
=

b

ab
+

a

ab
=
b+ a

ab
(1.3)

1

a
− 1

b
=

b

ab
− a

ab
=
b− a

ab
(1.4)

Exercise 1.2 Simplify the following expressions: (a) 2xy
z ÷ z

2 (b) a2−b2

a+b

(c) 2
3 +

5
6 (d) a

b − c
d

n

Even if the numerical values of algebraic quantities are known, it is advisable to

retain the symbols in any algebraic manipulations until the very last step when the

numerical values can be substituted in. This allows you to see the role of each

quantity in the final answer, and generally minimizes errors.
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1.1 Algebra and physical quantities

1.1.2 Rearranging algebraic equations

Physical laws are often expressed using algebraic equations which may have to be

rearranged to obtain expressions for the quantity or quantities of interest. For

example, the equation relating the pressure, volume and temperature of a gas is

usually written PV = NkT , but it may be that we wish to obtain an expression

for T in terms of other quantities. The basic rule for manipulating an equation is

that the equality must not be disturbed. That is,

Whatever you do on one side of the ‘equals’ sign, you must also do on the

other side, so that the equality of the two sides is maintained.

This is illustrated by the following examples. (Do not be concerned at this stage

with the meaning of the various symbols.)

Worked Example 1.1

Essential skill:

Rearranging equations(a) Rearrange PV = NkT to obtain an expression for T .

(b) Rearrange v = u+ at to find an expression for t.

(c) Rearrange E = 1
2mv

2 to obtain an expression for v.

(d) Rearrange ω =
√

g
L to obtain an expression for L, where ω is the Greek

letter omega.

Solution

(a) To isolate T on the right-hand side, divide both sides by Nk. So

PV/Nk = NkT/Nk = T , i.e. T = PV/Nk.

(b) First subtract u from both sides, to give v − u = u+ at− u = at. Then

divide both sides by a to give (v − u)/a = at/a = t. Hence t = (v − u)/a.

(c) The easiest route is first to isolate v2 on one side of the equation.

So first multiply both sides by 2 and divide both sides by m to give

2E/m = 2mv2/2m = v2. Then taking the square root of both sides,

v = ±
√

2E

m

The square root of a number has two values, one positive and one negative.

The square root symbol (
√

) denotes only the positive square root, hence the

need for the ‘±’ sign, which is read as ‘plus or minus’. This reflects the

mathematics of the problem. Sometimes the physics of the problem allows

you to rule out one of these two values. For example, if v represented a

speed, then it would have to be greater than or equal to zero, and thus only

the positive square root would be retained.

(d) The first step is to square both sides of the equation: ω2 = g/L, and the

next step is to multiply both sides by L/ω2, to give L = g/ω2.

9



Chapter 1 Manipulating numbers and symbols

Having seen some examples, try the following for yourself.

Exercise 1.3 Rearrange each of the following equations to give expressions for

the mass m in each case.

(a) E = −GmM
r (b) E2 = p2c2 +m2c4 (c) T = 2π

√
m
k

n

1.1.3 Solving simultaneous equations

Two different equations containing the same two unknown quantities are called

simultaneous equations if both equations must be satisfied (hold true)

simultaneously. It is possible to solve such equations by using one equation to

eliminate one of the unknown quantities from the second equation. An example

should make the procedure clear.

Worked Example 1.2

In a certain binary star system it is determined that the sum of the masses of
Essential skill:

Solving simultaneous equations the two stars is m1 +m2 = 3.3 times the mass of the Sun, whilst the ratio of

the two masses is m1/m2 = 1.2. What are the individual masses of the two

stars?

Solution

If we rewrite the first equation to give an expression for m1 in terms of m2,

then we can insert this result into the second equation to give an expression

for m2 alone.

Rearrangement of the first equation gives m1 = 3.3 −m2, then substituting

for m1 in the second equation gives (3.3−m2)/m2 = 1.2. Multiplying both

sides of the equation by m2, we have (3.3 −m2) = 1.2m2; then adding m2

to both sides gives 3.3 = 2.2m2; from which clearly m2 = 3.3/2.2 = 1.5
times the mass of the Sun. Substitution for m2 into either of the first two

equations shows that m1 = 1.8 times the mass of the Sun.

Note the important fact that in order to find two unknowns, two different equations

relating them are required. By extension, it is always necessary to have as many

equations as there are unknowns. You will find yourself constantly applying this

principle as you solve numerical problems in astrophysics and cosmology.

Exercise 1.4 Solve the following pairs of equations to find the values of a and

b. (a) a− b = 1 and a+ b = 5 (b) 2a− 3b = 7 and a+ 4b = 9

n

1.2 Powers, roots and reciprocals

The power to which a number is raised is also called its index or exponent. So

24 = 2× 2× 2× 2 = 16 can be said as ‘two to the power of four’ or simply ‘two

10



1.2 Powers, roots and reciprocals

to the four’. Symbols and units of measurements can also bear indices. For

example, the area of a square of side L is L× L = L2 and could be measured in

square metres, written m2.

1.2.1 Combining powers

It is very important to understand how to manipulate the indices when quantities

are multiplied and divided. As an example, consider multiplying 23 by 22. This

may be written out as 23 × 22 = (2× 2× 2)× (2 × 2) = 25. Generalizing from

this example, for any quantity y,

ya × yb = ya+b (1.5)

From this rule, we can deduce many other properties of indices. For example,

Equation 1.5 shows what a power of zero is. Since ya × y0 = y(a+0) = ya,

multiplying any quantity by y0 leaves it unchanged. So, for any value of y,

y0 = 1 (1.6)

Equation 1.5 can also be used to demonstrate the meaning of a negative power.

Since ya × y−a = ya−a = y0 = 1, dividing both the left- and right-hand sides of

this equation by ya shows that

y−a = 1/ya (1.7)

Negative powers are frequently used with symbols in the units of physical

quantities. For instance, speed is measured in metres per second, written in

symbols as m/s or m s−1. By use of negative indices, Equation 1.5 can easily be

applied to situations in which quantities are divided by one another. For example,

105/103 = 105 × 10−3 = 105−3 = 102, or more generally,

ya/yb = ya−b (1.8)

A fractional power denotes the root of a number and this too can be deduced from

Equation 1.5. Thus y1/2 × y1/2 = y(1/2+1/2) = y1 = y. So y1/2 is the quantity

that when multiplied by itself gives y. In other words, y1/2 is the square root of y,

y1/2 =
√
y. More generally, the quantity y1/n is the nth root of y,

y1/n = n
√
y (1.9)

Consider raising to some power a quantity that already has

an index, such as (22)3. Writing this out in full shows that

(22)3 = (22)× (22)× (22) = 2(2+2+2) = 26 = 22×3, or in general,

(ya)b = yab (1.10)

Like Equation 1.5 or Equation 1.8, this rule applies to any powers, whether

positive or negative, integer or fractional.

Exercise 1.5 Simplify the following to the greatest possible extent. (You

should not need to use a calculator, but you may find that doing so helps you to

understand some of the individual steps in the calculation.)
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Chapter 1 Manipulating numbers and symbols

(a) 102 × 103 (b) 102/103 (c) t2/t−2 (d) 10001/3 (e) (104)1/2 (f) 125−1/3

(g) (x4/4)1/2 (h) (2 kg)2/(2 kg)−2

n

1.2.2 Solving polynomial equations

A polynomial is an expression which is composed of one or more variables

and constants, which are combined using only addition, subtraction and

multiplication, or raising a variable to a non-negative, integer power. For instance,

x3 + 7x− 15, is a polynomial, but x3 − 7/x + 15x5/2 is not, because the second

and third terms involve division by a variable (i.e. x to the power −1) and a

non-integer power of x respectively.

Polynomials may be used to form polynomial equations, which are used to

describe a wide range of problems in maths, physics and astronomy. The

simplest polynomial equations to deal with are quadratic equations, namely

equations containing terms no higher than the variable squared. They can be

solved relatively easily, and in general will have two solutions. For instance, the

quadratic equation x2 + 2x − 35 = 0 has two solutions, x = −7 and x = 5.

Substitution of either value for x into the quadratic equation will leave it balanced.

A quadratic equation can be written as the product of two factors. The example

above is simply x2 + 2x− 35 = (x+ 7)(x− 5). Clearly this allows the solution

to be found by simply setting either factor equal to 0, ie. either (x+ 7) = 0 so

x = −7, or (x− 5) = 0 so x = 5.

In general, the solutions to a quadratic equation of the form ax2 + bx+ c = 0 are

given by

x =
−b±

√
b2 − 4ac

2a
(1.11)

The original quadratic equation may then be written as the product of two factors,

as

ax2 + bx+ c = a

(
x− −b+

√
b2 − 4ac

2a

)(
x+

−b−
√
b2 − 4ac

2a

)

Exercise 1.6 Determine the solutions of the following quadratic equations

and write each as the product of two factors. (a) 4x2 + 10x − 6 = 0
(b) x2 − 0.9x− 17.86 = 0 (c) 8x2 − 50 = 0

n

The highest power in a polynomial equation is referred to as the degree of the

polynomial. So x3 + x2 + x+ 1 = 0 is a polynomial of degree three (or a cubic

equation) and x4 + x3 + x2 + x+ 1 = 0 is a polynomial of degree four (or a

quartic equation). The solutions to cubic and quartic equations may also be found

using rules, although they are rather more complicated than Equation 1.11. There

are no general formulae to solve polynomials of degree five or higher in terms of

their coefficients.

Some polynomials, such as x2 + 1 = 0, do not have any solutions that are real

numbers. In order to solve such equations we must consider imaginary numbers,

which are the topic of the next section.
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1.3 Imaginary numbers

1.3 Imaginary numbers

One of the main reasons for introducing the concept of imaginary numbers is that

not every polynomial equation has solutions that are real numbers. For instance,

the equation x2 +1 = 0 has no real solution, since it implies x2 = −1 and there is

no real number which, when multiplied by itself, gives the answer −1. As there

are no real numbers that satisfy this equation, we imagine there is such a number

and give it the symbol i. This is referred to as the imaginary unit. It is important

to realize, though, that i is a well-defined mathematical construct, despite its

name!

i is the number which, when multiplied by itself, gives the answer −1.

We may therefore write the solutions to x2 = −1 as x = +i and x = −i.

The original quadratic equation may then be written in terms of factors as

(x+ i)(x− i) = 0.

l What are the result of the following multiplications: (i × i), (−i ×−i),
(i ×−i)?

m (i × i) = −1,

(−i ×−i) = (−1× i ×− 1× i) = (1× i × i) = −1,

(i ×−i) = (i ×− 1× i) = (−1×−1) = +1

A complex number is one which has both real and imaginary parts, such as

4 + 5i. Operations that you are familiar with carrying out on real numbers (such

as multiplication, division, raising to a power, etc.) can be extended to imaginary

and complex numbers. The rule is simply to treat i as an unknown quantity whilst

you manipulate the expression, and then use the definition above to replace any

occurrence of i2 with −1. Higher integer powers of i can also be replaced with

one of ±i or ±1.

l What are i3, i4, i5, and i6?

m i3 = i2× i = −1× i = −i

i4 = i2× i2 = −1×−1 = +1
i5 = i4× i = +1× i = i

i6 = i2× i4 = −1×+1 = −1

Often, i is loosely referred to as the ‘square root of minus one’ but this is not quite

correct, and treating it as such can produce the wrong result. For instance if we

write −1 = i × i =
√
−1×

√
−1, then we could combine the square root terms to

give −1 =
√

(−1)× (−1) =
√
1 = 1 which is incorrect.

The calculation rule
√
a×

√
b =

√
a× b is only valid for real, non-negative

values of a and b.

To avoid making mistakes like this when you are manipulating complex numbers,

the best strategy is simply never to use a negative number under a square root

sign. For instance, if you are finding the solution of x2 + 9 = 0, instead of writing

x =
√
−9, you should write x = i

√
9, and clearly the answer is x = ±3i.
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Chapter 1 Manipulating numbers and symbols

1.4 Unit (dimensional) analysis

Any equations involving physical quantities must have the same units on both

sides; it would clearly be nonsensical to write 2 metres = 6 seconds. This is the

basis of unit analysis or dimensional analysis. Dimensions in the sense used here

are analogous to units: they express the nature of a physical quantity in terms of

other quantities that are considered more basic. Thus, we can say that the units of

area are metre2, or equivalently, that area has the dimensions of length2.

A good habit to cultivate is that of checking, whenever you write an equation,

whether the units on both sides match − in other words whether the equation

is ‘dimensionally correct’. For example, suppose you had derived the

expression
√

2Ft2/a for a change in energy, where F was the magnitude of a

force, t a time and a the magnitude of an acceleration. A quick check on the units

would be enough to alert you that something was amiss.

The units of energy are J = N m = kg m2 s−2.

The units of
√
Ft2/a are

√
N s2/m s−2 =

√
kg m s−2s2/m s−2 =

√
kg s2.

The units on either side of the proposed ‘equation’ are not the same, and this is

sufficient reason to state unequivocally that the equation is wrong. Note however,

that the reverse is not necessarily true. An equation may have the same units on

either side (i.e. be dimensionally correct), but still be wrong because of a missing

numerical factor or some other error.

Unit analysis can also help if you cannot quite remember an equation.

Worked Example 1.3

Is the equation for the speed of a sound wave v = T/λ or v = 1/λT or
Essential skill:

Unit analysis v = λT or v = λ/T ?

Solution

The units of wavelength λ are metres (m), and the units of wave period T are

seconds (s). The only way to combine these to get the units of speed, m s−1,

is to divide wavelength by wave period, so the correct formula is v = λ/T .

1.5 Function notation

If the value of one variable, x say, is wholly or partly determined by the value

of another, t say, then x is said to be a function of t. If we know the precise

relationship between x and t then we can represent it by an equation. For instance,

the position x of a body moving along a straight line at constant speed v, starting

at x0, is given by the equation x = x0 + vt. However, it is also possible to

indicate the existence of a relationship between x and t in a very general way,

writing x = f(t) to indicate that ‘x is a function of t’. In this example we already

know the form of f , it is simply f(t) = x0 + vt, but it is possible to imagine cases

where the functional form is different, or even unknown. In these cases, the more

general expression x = f(t) can be very useful. (There is nothing special

about using the letter f to represent the function; we could equally have written

x = g(t), where g(t) = x0 + vt, or indeed used any other letter.)
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1.6 Powers of ten and scientific notation

The use of brackets here is very different from in the sections above where they

were used to indicate the precedence of algebraic operations. Now the brackets

indicate that t is a variable which determines the value of x, and the value of x is

given by the function f evaluated at t. The variable t is called the argument of

the function f . In particular, the notation f(t) does not indicate that some variable

f is to be multiplied by another variable t. It will be clear from the context when

brackets are being used to indicate precedence and when they are being used to

indicate a functional relation.

1.6 Powers of ten and scientific notation

Powers of ten, such as 106 = 1000 000 (a million) or 10−3 = 1/1000 = 0.001
(one thousandth), very often appear in astrophysics or cosmology because they

provide a shorthand way of writing down very large or very small quantities. A

quantity is said to be in scientific notation if its value is written as a decimal

number between 1 and 10 multiplied by 10 raised to some power.

For example, the diameter of the Earth is about 12 760 km. In scientific notation

this would be written as 1.276 × 104 km or 1.276 × 107 m. Scientific notation is

equally useful for very small quantities: for instance, the mass of an electron is

conveniently written as 9.1× 10−31 kg. Scientific notation is particularly valuable

in relation to significant figures, described in the next section. Furthermore,

scientific notation is a great aid to calculation, since the decimal numbers and the

powers of ten can be dealt with separately, as shown by the following example.

Worked Example 1.4

Calculate the value of a light-year (the distance light travels in one year),
Essential skill:

Using scientific notationgiven that the speed of light is 3.00 × 108 m s−1.

Solution

First we can write

1 year = 365 days × 24
hours

day
× 60

minutes

hour
× 60

seconds

minute
= 3.154× 107 s

In that time, light travels a distance given by

distance = elapsed time × speed

= 3.154 × 107 s × 3.00 × 108 m s−1

= (3.154 × 3.00) × (107 × 108) s m s−1

= 9.46× 1015 m

Exercise 1.7 The nearest star, Proxima Centauri, is 4.2 light-years away. Write

this distance in kilometres expressed in scientific notation.

n
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Chapter 1 Manipulating numbers and symbols

1.7 Significant figures

Suppose you are told that a particular neutron star orbits its companion star,

travelling a distance of 4.1 × 106 km in 1.806 × 105 s. What is the speed v of the

neutron star in its orbit? Clearly v = (4.1 × 106 km)/(1.806 × 105 s), and if you

input this division into your calculator, you will get 22.702 104 0975 km s−1.

However, given the accuracy with which the distance and time were quoted, there

is no justification for retaining this many digits in the answer.

The number of accurately known digits in the value of a physical quantity, plus

one uncertain digit, is called the number of significant figures. Experimental

results should always be quoted to a number of significant figures consistent with

the precision of the measurement. If two or more quantities are combined, for

instance by dividing one by the other, then the result is known only to the same

number of significant figures as the least precisely known quantity.

In the example above, the calculator display could be ‘rounded’ to give

20 (to 1 significant figure)

23 (to 2 significant figures)

22.7 (to 3 significant figures)

22.70 (to 4 significant figures)

22.702 (to 5 significant figures)

If the last significant figure was followed by a digit from 0 to 4 it is unchanged in

rounding; if it was followed by a digit from 5 to 9 it is increased by one.

So, how many significant figures should we quote in giving the neutron star’s

speed? Clearly, the orbit has been timed to 4 significant figures, but the distance is

only known to an accuracy of 2 significant figures (often abbreviated to 2 s.f.). So

the final result for v is probably best quoted as 23 km s−1, the same accuracy

as the least accurate quantity used in the calculation. Note though that if a

calculation involves multiple steps, it is best to retain more digits through the

calculation, and to round to the correct number of significant figures only at the

final stage. In this way you will avoid the introduction of rounding errors.

Scientific notation is also very helpful in dealing with significance in small

numbers. Suppose you read that a certain pulsar flashes a pulse of radiation every

69 milliseconds, and you need to convert this period into seconds. Clearly, the

value in seconds should be quoted with the same precision, i.e. the same number

of significant figures, as the original measurement. In decimal notation, you

would express the result as 0.069 s, which has two significant figures; leading

zeros do not count as significant figures. In scientific notation, the measurement

would be 6.9 × 10−2 s, having the same number of significant figures.

Very large numbers are often written (e.g. in the popular press) in a misleading

fashion. The speed of light, for example, could be stated as 3× 105 km s−1 or

3.00× 105 km s−1, but it would be incorrect to write it as 300 000 km s−1 because

this implies that all six digits are significant. To such precision, the value would

actually be 299 792 km s−1. Some astrophysics texts adopt the convention that, in

contrived examples, data can be assumed to have arbitrarily high precision, and

that all zeros in provided numbers such as 6000 are significant. However, you
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1.8 Experimental uncertainties

should always think about the context and the physical realities of the situation

before making assumptions about the precision to which data are quoted.

Exercise 1.8 What, in km s−1 and to an appropriate number of significant

figures, are the speeds involved in the following situations?

(a) An atom in the photosphere of a star travels 6093 km in 500 s.

(b) A star orbiting the centre of a galaxy travels 2.0 × 1018 km in 8.86 × 1015 s.

(c) Light travels 3000 km in 0.01 s.

n

1.8 Experimental uncertainties

Measured values of physical quantities are never exact. There are always

uncertainties associated with measurements, and it is important to assess the size

of the uncertainties and to quote them alongside the measured values. So if

astronomers carried out some observations to determine the apparent magnitude

of a particular star (see Section 2.6), then the form in which they would quote their

result would be mv = 12.3 ± 0.2. This means that their best estimate of the value

is a V-band magnitude of 12.3, and their confidence in this value is quantified by

the uncertainty ±0.2, that is, the true value is probably between 12.5 and 12.1.

1.8.1 Types of uncertainty

Uncertainties arise in a variety of ways in astronomy. These include uncertainties

caused by: lack of skill, instrumental limitations, extraneous influences, real

variations in the quantity that is measured, and random fluctuations. These various

uncertainties can be divided into two quite different types, those that are random

and those that are said to be systematic.

Set (b)Set (a)

8.4
7.6
7.9
8.9
8.3
7.8
9.1
8.7
8.2
7.2

8.07
8.30
8.13
8.27
8.43
8.02
8.16
8.22
8.18
8.20

spread of
set (a) spread of

set (b)

‘true’ value

7

8

9

m
ea

su
re

d
 v

al
u
e

Figure 1.1 Two examples of

random uncertainties. The

two sets of measurements

in the table, (a) and (b), are

represented by the vertical

positions of the dashes on the

graph. The ten measured

values for each set are scattered

around the same true value.

However, the range over which

the measurements are scattered

is much larger for set (a) than

for set (b). This indicates that

the random uncertainty is

greater for set (a) than for set

(b), which means that the

precision of the measurements is

lower for set (a) than for set (b).

A random uncertainty leads to measured values that are scattered in a random

fashion over a limited range, as shown in Figure 1.1. The smaller the random

uncertainty in the measurements, the smaller is the range over which they are
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Chapter 1 Manipulating numbers and symbols

scattered. Measurements for which the random uncertainty is small are described

as precise.

The best estimate that we can make for the value of the measured quantity is the

mean, or average, of the measured values. As you might expect, if we make more

measurements, then the mean value that we calculate is likely to be a better

estimate of the quantity that we are measuring. We will make this statement

quantitative later.

Systematic uncertainties have a different effect on measurements. A systematic

uncertainty leads to measured values that are all displaced in a similar way from

the true value, and this is illustrated in Figure 1.2. Such a situation may arise, for

instance, if measurements are made using a ruler whose divisions are closer

together or further apart than they should be. The two examples shown have the

same random uncertainty: in both cases the spread, or scatter, of the values is the

same. However, in both cases the measured values are systematically displaced

from the true value. The values in set (b) are all larger than the true value, and the

values in set (a) are all smaller. The difference between the mean value of a set of

measurements and the true value is the systematic uncertainty. Measurements in

which the systematic uncertainty is small are described as accurate. Therefore,

to improve the accuracy of a measurement we need to reduce the systematic

uncertainties.

7

8

9

‘true’ value

m
ea

su
re

d
 v

al
u
e

6

set (a)

systematic
uncertainties

set (b)

Figure 1.2 The effect of systematic uncertainties. Two sets of measurements,

(a) and (b), are represented by the vertical positions of the dashes on the graph.

For set (a), the systematic uncertainty causes all of the measured values to be

smaller than the true value. For set (b) the systematic uncertainty causes all of the

values to be larger than the true value, but the size of the uncertainty is smaller

than for set (a). The measurements in set (b) are therefore more accurate than

those in set (a).
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1.8 Experimental uncertainties

1.8.2 Estimating random uncertainties

One way to estimate the size of random uncertainties in a measured value is by

making a series of repeated measurements of the quantity. Random uncertainties

lead to a scatter in measured values, and the uncertainty in the measurements can

be deduced from the range over which the values are scattered. As a rough rule of

thumb, we generally take the uncertainty in each measurement as about 2/3 of the

spread of the values. Generally, you should not be satisfied with making a single

measurement of a quantity, but should repeat the measurement several times. The

presence of a random uncertainty in a measurement can be detected − and its size

estimated − by repeating the measurement a number of times.

As more measurements are made however, using the overall spread of the

measurements, or even 2/3 of the overall spread, as a measure of the random

uncertainty may give a misleading estimate of how far a typical measurement lies

from the mean, since the spread is calculated from only the maximum and

minimum values. To avoid this problem, a measure of the random uncertainty is

used that depends on the values of all of the measurements, not just the two most

extreme. This is known as the standard deviation of the measurements, defined as

follows:

The standard deviation sn of a set of n measured values xi is the square root of

the mean of the squares of the deviations di of the measured values from their

mean value 〈x〉,

sn =

√∑
d2i
n

(1.12)

where the deviation di of the measured value xi from the mean value 〈x〉 is

di = xi − 〈x〉 (1.13)

and the mean value 〈x〉 of the measurements is

〈x〉 =
∑
xi
n

(1.14)

The standard deviation is the most commonly used measure of the scatter of a

set of measurements, and is used to quantify the likely random uncertainty

in a single measurement. The standard deviation is sometimes known as the

root-mean-square (rms) deviation, for obvious reasons.

A useful model to describe how often you will count a certain number of

occurrences of an event (like the detection of a photon) in a certain time interval is

the Poisson distribution. The Poisson distribution can be used to describe a large

variety of phenomena that are relevant to astronomy, however it is only applicable

when each event counted is independent of all the other events. The Poisson

distribution is not symmetric about its mean value, but as the number of events

increases, it does become symmetrical, and approaches the shape of a standard

mathematical form known as the normal distribution, which is also known as the

Gaussian distribution.
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2sn

x〈x 〉

±sn

±2sn

±3sn

Figure 1.3 The standard

deviation sn characterizes

the width of the Gaussian

distribution. The shaded

area under this Gaussian

distribution curve represents the

measurements that lie within

±sn of the mean. This area is

68% of the total area under the

curve, indicating that 68% of

measurements are expected to

fall within this range, hence the

rule of two-thirds used earlier.

Figure 1.3 shows how the standard deviation of a Gaussian distribution curve

is related to the spread of the curve. It is clear that a substantial fraction of

measurements deviates from the mean value by more than the standard deviation

sn. For a particular range of the measured variable, the area under the distribution

curve represents the fraction of measurements that lie within that range. For a

Gaussian distribution, 68% of measurements lie within one standard deviation, i.e.

within ±sn, of the mean value. Therefore, 32% of measurements are expected to

differ from the mean by more than the standard deviation sn. Note that the

distribution curve falls off rapidly as the measurements deviate further from

the mean. 95% of measurements lie within ±2sn of the mean and 99.7% of

measurements lie within ±3sn of the mean.

1.8.3 Uncertainties when counting randomly occurring
events

An important type of random uncertainty arises when investigating processes that

involve counting events that fluctuate randomly, such as the number of photons

from a star arriving on a detector. It turns out that if the number of randomly

fluctuating events counted in a given period is n, the uncertainty in this number is

given by

uncertainty =
√
n (1.15)

This uncertainty is a measure of the likely difference between the value n that

would be counted in any single measurement and the mean value of many

measurements of n, namely 〈n〉, that would be found from a long series of

repeated measurements. It is important to note that increasing the number of

events reduces the fractional uncertainty:

fractional uncertainty =
uncertainty

measured value
=

√
n

n
=

1√
n

(1.16)
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1.8.4 The uncertainty in a mean value

The standard deviation sn of a set of measurements tells us about how

widely scattered the measurements are − it indicates how far the individual

measurements are likely to be from the mean value. We usually take the mean

value of the measurements as our best estimate of the true value, and so what we

really need to know is how far the mean value is likely to be from the true value.

In other words, we want to know the uncertainty in the mean value.

Not unreasonably, it turns out that the uncertainty in a mean value decreases as

the number of measurements used to calculate the mean increases. In other

words, you can reduce the uncertainties in an experiment by increasing the

number of measurements that you make. The uncertainty σm in a mean value that

is derived from n measurements that have a standard deviation sn is

σm =
sn√
n

(1.17)

Note that, whereas the standard deviation tells us about the scatter of individual

measurements, the uncertainty in the mean of n measurements tells us about the

scatter of the mean values that are each derived from n measurements.

Exercise 1.9 Ten measurements were made of the

magnitude of a quasar, and the values obtained were:

mv = 22.0, 21.6, 21.8, 22.3, 22.1, 22.0, 21.9, 22.2, 21.9, 22.2

(a) What is the mean value of the quasar’s magnitude? (b) Use the spread of the

measurements to estimate the random uncertainty in an individual measurement

of the quasar’s magnitude. (c) Calculate the standard deviation of the ten

measurements, and compare it with the estimate of the random uncertainty

obtained in part (b). (d) Calculate the uncertainty in the mean magnitude.

n

1.8.5 Combining uncertainties in a single quantity

The rules for combining independent uncertainties are given below. If A and B
are measured quantities, with uncertainties δA and δB respectively, then the

uncertainty δX in the quantity X is as follows:

If X = kA then δX = k δA (1.18)

If X = kA± jB then δX =

√
(k δA)2 + (j δB)2 (1.19)

If X = kA× jB then
δX

X
=

√(
δA

A

)2

+

(
δB

B

)2

(1.20)

if X = kAn then
δX

X
= n

δA

A
(1.21)

where j, k and n are constants (i.e. they have no associated uncertainty).

In general, note that for any mathematical function X = f(A) the uncertainty in

X, indicated by δX, is related to the uncertainty in the quantity A, indicated by

21



Chapter 1 Manipulating numbers and symbols

δA, by the relationship

|δX| = |f(A± δA)| − |f(A)| (1.22)

In other words, the magnitude of the uncertainty in X is equal to the magnitude of

the value of the function evaluated at (A± δA) minus the magnitude of the value

of the function evaluated at A.

1.9 Logarithms and logarithmic functions

As discussed above, numbers such as 100 and 0.01 can be expressed in terms of

powers of 10, respectively as 102 and 10−2. In fact, by the use of decimal powers,

any number can be expressed as a power of ten. If you like, you can check the

following on your calculator, using the yx or 10x button.

1 = 100.0

2 = 100.301 (to 3 s.f.)

3 = 100.477 (to 3 s.f.)

3.16 = 100.5 =
√
10 (to 3 s.f.)

10 = 101.0, etc.

In each case, the power to which 10 is raised is called the logarithm to base ten

or common logarithm (abbreviated log10 or log) of the resulting number. For

example,

log10 100 = 2 since 100 = 102

log10 0.1 = −1 since 0.1 = 10−1

log10 2 = 0.301 since 2 = 100.301 (to 3 s.f.)

log10 3.16 = 0.5 since 3.16 = 100.5 (to 3 s.f.), etc.

So in general,

If x = 10a then log10 x = a (1.23)

That is, the log10 function reverses the operation of the 10x function.

Exercise 1.10 Without using a calculator, write down the value of

(a) log10 1000 (b) log10 0.001 (c) log10
√
10

n

Logarithms are useful for dealing with numbers that range from very large to

very small. Figure 1.4 illustrates a range of lengths in the natural world, most

conveniently written in scientific notation and plotted using a logarithmic scale.

Base ten is commonly used for logarithms, since ten is the base of our counting

system, but of course any number can be raised to a power and hence used as a

base for logarithms. Logarithms to base e (where e is a very special number

having a value 2.718 to 4 significant figures) are called natural logarithms

(abbreviated loge or ln), and are used extensively in describing many features of
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1.9 Logarithms and logarithmic functions

the natural world. (The significance of e will become clearer in Section 4.4 on the

exponential function.)

If y = eb then loge y = b (1.24)

(Note: Some texts use ‘log’ (without a subscript) to refer to loge rather than log10.

We recommend writing the subscript ‘e’ or writing ‘ln’ to avoid ambiguity.)
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Figure 1.4 Some examples of lengths relevant to astrophysics and cosmology.

This diagram is plotted using a ‘logarithmic’ scale, in which each step represents

multiplication by a factor of 102. Note the difference from the more usual

(‘linear’) type of scale, in which each interval along the axis represents a constant

addition.

Three important rules for the manipulation of logarithms follow from the

definitions above and the rules for combining powers. These rules apply
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irrespective of which base (10, e, or some other) is adopted:

log(a× b) = log a+ log b (1.25)

log(a/b) = log a− log b (1.26)

log ab = b log a (1.27)

Taking the logarithms of both sides of an equation can often make the situation

easier to deal with. The following example makes use of each of the rules above

to illustrate this.

Worked Example 1.5

The following equation expresses the angular momentum of a binary star
Essential skill:

Manipulating logarithms system (see Sections 2.10 and 5.5, although the details of the astrophysics

are not important for this example).

J =M1M2

(
Ga

M1 +M2

)1/2

Take the natural logarithms of each side of this equation.

Solution

Using the three rules above for the logarithms of products, ratios and powers

of numbers, we have

loge J = loge (M1M2) +
1

2
loge

(
Ga

M1 +M2

)

so

loge J = logeM1 + logeM2 +
1

2
loge(Ga) −

1

2
loge(M1 +M2)

Make sure you can see how the expression above follows from the three

rules.

Exercise 1.11 (a) Given that log10 2 = 0.301, without using a calculator,

work out the values of:

(i) log10 200 (ii) log10 32 (iii) log10 0.25

(b) Using the basic rules of combining logarithms outlined above, rewrite each of

the following expressions as a single logarithm:

(i) log10 3 + log10 8 (ii) log10 4− log10 3− log10 5 (iii) 3 log10 2

n

1.10 Graphs

In astrophysics and cosmology, as in most areas of science, you will frequently

encounter graphs as a means of depicting how one quantity varies as a function of

another.
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1.10.1 Straightline graphs

Two quantities related in such a way that if one is doubled the other also doubles

are said to be directly proportional. To take a simple example, Hubble’s law at

low speeds (see Chapter 3) states that the apparent speed of recession, v, of a

galaxy is directly proportional to its distance away from us, d. If we find a galaxy

with double the value of v, then d doubles. Trebling v trebles d, and when

v = 0, d = 0. This relationship of proportionality is indicated by writing v ∝ d
(read as ‘v is proportional to d’) or v = kd, where k is called the constant of

proportionality. A graph of v against d is a straight line that passes through the

origin (Figure 1.5).

Note how the axes in Figure 1.5 are labelled. The scales show pure numbers, so in

each case the quantity involved is divided by the units in which it is measured

(v/km s−1 and d/Mpc) to give a dimensionless number. The shorthand way of

describing a graph in which y is plotted vertically and x horizontally is a ‘graph of

y against x’ or ‘y versus x’.

v
/k

m
 s

−1

0
0 100 200 300 400 500

5 ×  10 3

1 ×  10 4

1.5 ×  10 4

2 ×  10 4

2.5 ×  10 4

3 ×  10 4

d/Mpc

Figure 1.5 A graph showing how the apparent speed of recession v of distant

galaxies varies with their distance d from Earth. Notice that the unit of the

distance axis is given as ‘Mpc’ – this is the megaparsec – a commonly used unit

of astronomical distance (see Section 2.2).

Quantities related in such a way that if one halves, the other doubles, are said to

be inversely proportional. The pressure P and volume V of a fixed amount

of gas at constant temperature (such as in an interstellar cloud) are inversely

proportional: P ∝ 1/V . A graph of P against V is thus a curve (of a shape called

a hyperbola, Figure 1.6a), but a graph of P against 1/V or 1/P against V is a

straight line through the origin (Figures 1.6b and c).
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1/V
(a) (b) (c)

P

V V

1/PP

Figure 1.6 Graphs showing the way in which the pressure P of a fixed amount

of gas at constant temperature depends on its volume V .

Any linear (straight-line) graph has a constant slope or gradient. We can use

Figure 1.5 to calculate the gradient for the Hubble’s law example. First, choose

two convenient but well separated points A and B on the graph, and read off the

corresponding values of d, to be called dA and dB . The difference between

them is the change in d. Changes are usually denoted by the upper case Greek

letter delta, symbol ∆. Thus, ∆d (read as ‘delta dee’) means the change in d:

∆d = dB − dA. The corresponding change in v, written ∆v, can also be read off

the graph: ∆v = vB − vA. The gradient of the line is then defined as

gradient =
∆v

∆d
=
vB − vA
dB − dA

More generally, for a graph of y versus x,

gradient =
∆y

∆x
=
y2 − y1
x2 − x1

The gradient of a graph represents the rate of increase of one quantity as another

quantity increases.

Worked Example 1.6

Compute the gradient for the Hubble’s law graph in Figure 1.5.
Essential skill:

Measuring the gradient of a

graph
Solution

In this case

∆v = (3.0 × 104 km s−1)− (1.5 × 104 km s−1) = 1.5× 104 km s−1

and

∆d = (500 Mpc)− (250 Mpc) = 250 Mpc

So

∆v/∆d = (1.5× 104 km s−1)/(250 Mpc) = 60 km s−1 Mpc−1

The gradient ∆v/∆d represents the rate of increase of apparent speed with

distance, which in this case is 60 kilometres per second per megaparsec.

(Note: This value is in fact the Hubble constant, although the currently

accepted value is somewhat different from this, see Chapter 3.)

26



1.10 Graphs

In Example 1.6, the graph slopes upwards to the right, because v increases with d,

and so the gradient ∆v/∆d is positive. A graph sloping downwards from left to

right tells us that one quantity decreases as the other increases, and it will have

negative gradient.

If we plot one quantity against another and get a straight line that crosses the axes

at points away from the origin, then the quantities are not proportional to each

other. However, since the graph is a straight line, we can still say that there is a

linear relation between them. The points at which the line crosses the axes are

called the intercepts. The general equation for a straight-line graph of y versus x
is

y = mx+ c (1.28)

where c is the intercept on the y-axis, i.e. the value of y when x = 0, and m is the

gradient. (Symbols other than m and c are sometimes used, but the meaning is the

same.)

1.10.2 Making curved graphs straight

When a graph of one quantity plotted against another is a curve, and you think

you know the relationship between them, it may be possible to re-plot the graph to

produce a straight line.

If you suspect that y = a0 + a1x
2, where a0 and a1 are unknown constants, then

you could plot y versus x2 (rather than y versus x), to give a straight line of slope

a1 and y-intercept a0. Of course, if in reality y = a0 + a1x
3 then the graph will

not be straightened by this approach, and another attempt, perhaps plotting y
versus x3 could be tried.

If you suspect that y = axk, where a and k are unknown constants, you can use

logarithms to straighten the graph. (Such an equation is referred to as a power law

for obvious reasons.) Taking the logarithm of both sides gives

log y = log(axk)

= log a+ log xk

= log a+ k log x

Since log y = log a + k log x, by plotting log y versus log x you would get a

straight line whose slope is k and whose y-intercept is log a. (This technique

works irrespective of which base – 10, e, or some other – is used for the

logarithms, so subscripts have been ignored.) Both the slope and intercept can be

measured, so plotting a logarithmic graph allows a power law to be tested and the

relevant power to be found.

Worked Example 1.7

The volumes V of stars are related to their radii r by the equation
Essential skill:

Making curved graphs straightV = 4
3πr

3. A plot of V against r will therefore be curved (Figure 1.7a).

What straight-line graph involving V and r could be plotted instead?
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Solution

Since log10 V = log10(4π/3) + 3 log10 r, a plot of log10 V against log10 r
is a straight line of gradient 3 and intercept log10(4π/3) as shown in

Figure 1.7b.
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Figure 1.7 A log–log plot can identify a power law. (a) A plot of V against r is

a curve, (b) but a plot of log V against log r is a straight line.

Exercise 1.12 Suppose that you have taken measurements of two quantities U
and x, for various chosen values of x. You believe the two quantities to be related

according to the equation U = (kx2/2) + c, where k and c are constants. What

graph would you draw to find out whether your data supported this belief?

n

1.11 Angular measure

Plane angles may be measured in degrees, where 360◦ equals one complete turn.

Subdivisions of a degree are the arc minute (often abbreviated to arcmin), where

1◦ equals 60 arcmin (1◦ = 60′) and the arc second (abbreviated to arcsec), where

1 arcmin equals 60 arcsec (1′ = 60′′).

l How many arc seconds are there in one degree?

m 60 arcmin per degree × 60 arcsec per arcmin = 3600 arcsec per degree.

r

θ s

Figure 1.8 An arc of length s
subtending an angle θ at the

centre of a circle of radius r.
In astrophysics and cosmology, angles are sometimes measured in the SI unit of

radians, denoted by the abbreviation rad. A radian is defined as the angle

subtended at the centre of a circle by an arc (i.e. part of the circumference of a

circle) whose length is equal to that of the radius of the circle. So in general, if an

arc of length s subtends an angle θ at the centre of a circle of radius r, as shown in

Figure 1.8, then

θ (in radians) = s/r (1.29)
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Note that arbitrary plane angles are often denoted by the Greek lower case letter θ
(theta) and that angles expressed in radians are the ratio of two lengths (s/r) and

so are dimensionless (though not unitless). An arc of length 2πr, i.e. the whole

circumference, subtends an angle (in radians) of 2πr/r = 2π. Therefore, 2π
radians = 360◦ and so 1 radian = 360◦/2π = 57.3◦ (to 3 s.f.).

Exercise 1.13 (a) Convert the following into radians, expressing your answer

as a fraction/multiple of π: 90◦; 30◦; 180◦.

(b) Convert the following into degrees: π/8 radians; 3π/2 radians.

n

The three-dimensional analogue of plane angles measured in radians is the

concept of the solid angle measured in the SI unit of steradians, denoted by the

abbreviation sr. A steradian is defined as the solid angle subtended at the centre

of a sphere by a part of the surface of the sphere whose area is equal to the radius

of the sphere squared. So in general, for s sphere of radius r, if part of the surface

with area a subtends a solid angle Ω at the centre of the sphere, as shown in

Figure 1.9, then

Ω (in steradians) = a/r2 (1.30)

Note that arbitrary solid angles are often denoted by the Greek upper case letter Ω
(omega) and that solid angles expressed in steradians are the ratio of two areas

(a/r2) and so, like radians, are dimensionless (though not unitless). Since the

surface area of a sphere is given by 4πr2, clearly there are 4π steradians in a

complete sphere, 2π steradians in a hemisphere, and so on.

Ω

a

r

Figure 1.9 A sphere of radius

r showing part of its surface of

area a subtending a solid angle

Ω at the centre.

Exercise 1.14 The power per unit solid angle emitted over a particular

frequency range by a star is 1.4 × 106 W sr−1. What is the power per unit area

received by a detector sensitive to this frequency range and placed 1.0 × 1017 m

away from the star? (Hint: Calculate the solid angle subtended by a detector of

unit area situated at this distance from the star.)

n

1.12 Trigonometry

Trigonometric ratios and trigonometric functions are widely used in astrophysics

and cosmology when solving geometric problems and when dealing with

periodically varying phenomena.

1.12.1 Trigonometric ratios

right
angle

a

h
o

θ

Figure 1.10 A right-angled

triangle. The side opposite

the right angle, called the

hypotenuse, is of length h. The

side opposite the angle θ has

length o, the side adjacent to it

has length a.

Given the lengths of two sides of a right-angled triangle, the length of the third

side is uniquely determined, being given by Pythagoras’s theorem, which in

terms of the symbols given in Figure 1.10 may be written as

h2 = o2 + a2 (1.31)

Furthermore, knowledge of the value of one of the acute angles of a right-angled

triangle automatically gives the other angle too, since the angles of a triangle
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always add up to exactly π radians (180◦). Although the triangle might be any

size, it can only have one shape appropriate to those angles, and the ratios of any

two sides of the right-angled triangle are defined. These ratios are given the

following names:

side opposite an angle

hypotenuse
= sine of the angle; sin θ = o/h (1.32)

side adjacent to an angle

hypotenuse
= cosine of the angle; cos θ = a/h (1.33)

side opposite an angle

side adjacent to an angle
= tangent of the angle; tan θ = o/a (1.34)

Most calculators can calculate the sine, cosine or tangent of an angle. Many

calculators can be set up to receive the angle in either degrees or radians, but you

must take care to set up your calculator correctly according to your data. Usually

this involves selecting ‘radian mode’ or ‘degree mode’; see your calculator

handbook for details.

As the angle θ becomes smaller and smaller, o decreases and h becomes more and

more nearly equal to a, as shown in Figure 1.11. So, from the definition of cosine,

cos θ ≈ 1 when θ is small (1.35)

P

θ
a

h
right
angle

arc radius h

arc radius a

Figure 1.11 A right-angled

triangle with a small angle θ. Figure 1.11 also shows that, for small θ, the length o approximates the length of an

arc of a circle with centre P, and radius a (or h). So for an arc at radius a, the arc

length is o = aθ and so θ = o/a. Similarly, for an arc at radius h, the arc length is

o = hθ and so θ = o/h. Therefore, from the definitions of sine and tangent,

tan θ ≈ sin θ ≈ θ when θ is small and in radians (1.36)

The so-called small-angle approximations in Equations 1.35 and 1.36 hold

within 1% accuracy for angles less than about 0.2 radians (≈ 11◦).

Additional trigonometric relationships can be derived based on the properties

introduced above. Taking Pythagoras’s theorem (Equation 1.31) and dividing both

sides by h2, we see that (o/h)2 + (a/h)2 = 1, so

sin2 θ + cos2 θ = 1 (1.37)

Also, tan θ = o/a = (o/h)/(a/h), so

tan θ = sin θ/ cos θ (1.38)

Exercise 1.15 The disc of the Sun subtends an angle of 31.9 arcmin when

viewed from the Earth which is 1.50 × 1011 m away. What is the diameter of the

Sun?

n

1.12.2 The sine rule and cosine rule

Whilst the trigonometric ratios are useful when determining the properties of

right-angled triangles, they can also be extended to triangles in general, via two

formulae, known as the sine rule and the cosine rule.
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1.12 Trigonometry

The sine rule states that in any triangle with sides of length a, b and c, and internal

angles opposite to each of these sides of A, B and C respectively, then

a

sinA
=

b

sinB
=

c

sinC
(1.39)

Similarly, the cosine rule may be stated as

c2 = a2 + b2 − 2ab cosC (1.40)

That these equations reduce to the simple trigonometric ratios and pythagoras’s

theorem may be seen simply by assuming that the triangle in question is

right-angled with C = 90◦ and c then becomes the hypotenuse.

1.12.3 Trigonometric functions

So far we have discussed the trigonometric ratios (sin, cos, tan) in the context of

acute angles (0 < θ < 90◦) within right-angled triangles, but angles in nature are

not so constrained and may take any value −∞ < θ < +∞. (For example, if you

turn around twice, you have turned through an angle of 720◦ = 4π radians.)

Trigonometric functions can be defined over the full range of angles through the

concept of a unit circle (of radius 1 unit) as shown in Figure 1.12.

P

−1

y-axis

−1 x-axis

θ
1

1

y

x

Figure 1.12 A unit circle.

As the radius arm of a unit circle sweeps out an angle from θ = 0 on the x-axis

to θ = 90◦ on the y-axis, the x-coordinate of the tip of the radius arm traces

cos θ and the y-coordinate traces sin θ. As θ increases beyond 90◦, the x- and

y-coordinates continue to trace out the cosine and sine functions, the cosine

function becoming negative as x goes negative. The y-coordinate, and hence sin θ,

becomes negative once θ exceeds 180◦, at which time the radius arm lies just

below the negative x-axis. As the radius arm continues to sweep out angles from

θ = 0 to 360◦, the full range of the trigonometric functions is revealed. For angles

greater than 360◦, the functions repeat themselves. That is, the trigonometric

functions are periodic with period 360◦ or 2π, as shown in Figure 1.13.

−π 0 π

1

−1

2π 4π 5π−2π−3π 3π θ /rad

y
y  = cos θy  = sin θ

Figure 1.13 Graphs of sin θ and cos θ against θ.

If we plot a graph of the way one quantity varies with another and get either a sine

curve or a cosine curve, we say in either case that the quantity plotted on the

vertical axis varies sinusoidally. The argument is the expression or number whose

sine is being computed. So the argument of sin x is x, the argument of sin 0.4 is

0.4, and so on. The argument to the trigonometric functions is often specified in

radians rather than degrees. Furthermore, recall that a radian is really a
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dimensionless value, originally introduced as the dimensionless ratio between the

length of an arc of a circle and the radius, θ = s/r. The trigonometric functions

can also be thought of in this form, where the argument of the functions is not an

angle in degrees but a dimensionless number possibly unrelated to triangles.

An example which illustrates sinusoidal functions is that of the voltage V of

mains electricity which varies sinusoidally with time t according to the equation

V = Vmax sin(2πft), as illustrated in Figure 1.14. Vmax is known as the

amplitude; this is the quantity that scales the sine curve. The argument 2πft of

the sine function includes the frequency f (in the UK, the frequency of the mains

is 50 Hz). The greater the frequency, the shorter is the period of time before the

curve repeats itself. Figure 1.13 shows that a sinusoidally varying quantity repeats

exactly the same pattern of variation every time the argument of the sine function

increases by 2π. In Figure 1.14, the argument 2πft increases by 2π when ft
increments by 1, i.e. when t increments by 1/f . This time t = 1/f is called the

period of oscillation, T . Thus in Figure 1.14 the curve crosses the axis going

positive at t = 0 (since sin 0 = 0), and again, one full cycle later, at t = 1/f ,

where again sin(2πf × 1/f) = sin(2π) = 0. Alternative expressions for a

sinusoidal oscillation in time are thus:

y = A sin(2πft) (1.41)

or

y = A sin(2πt/T ) (1.42)

It is also useful to define an angular frequency ω = 2πf , from which it follows

that

y = A sin(ωt) (1.43)

T =1/ f

period T

amplitude
V max

0.02

V  = V max sin(2πft)

V

t/s

V max

Figure 1.14 Mains voltage varies sinusoidally with time.

If an oscillation doesn’t start with y = 0 at t = 0, the graphical representation of

Figure 1.13 must be modified by displacing the sine curve (Figure 1.15), and the

algebraic representation supplemented by adding a constant term, known as the

initial phase or phase constant, φ (the Greek letter phi, pronounced ‘fie’), to the

argument, i.e.

y = A sin(2πft+ φ) (1.44)

or

y = A sin(2πt/T + φ) (1.45)
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1.12 Trigonometry

or

y = A sin(ωt+ φ) (1.46)

Note that the phase difference between a sine function and a cosine function is

π/2, i.e. sin θ = cos(θ + π/2).

y

t

sine curve shifted

Figure 1.15 When the oscillation doesn’t start with y = 0 at t = 0, the sine

curve is shifted.

Exercise 1.16 The sinusoidal curve shown in Figure 1.16 represents the

apparent radial speed of a star in a binary system, as derived from Doppler shift

measurements (i.e. the speed relative to our line of sight). What are (a) the

amplitude of the star’s radial velocity, (b) the period of the motion, (c) the

frequency of the motion, and (d) the angular frequency of the motion?
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t/days

Figure 1.16 The radial velocity curve of a star referred to in Exercise 1.16.

n

1.12.4 Inverse trigonometric functions

Consider the general expression sin θ = x. If x is known, what value of θ satisfies

the expression? We write this value as θ = sin−1 x or arcsin x, called the inverse

sine function or arcsine function. sin−1 x is therefore the value whose sine is x.
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This applies to the trigonometric functions, not just trigonometric ratios. The

argument x takes negative as well as positive values, but clearly must be in the

range −1 ≤ x ≤ 1.

Consider sin−1(
√
3/2). Not only does sin(π/3) =

√
3/2, but so does sin(2π/3).

What then is sin−1(
√
3/2)? Is it π/3, 2π/3, or 7π/3 even? This debate is

settled by the convention that the sin−1 function is defined only on the range

−π/2 ≤ sin−1 x ≤ π/2. The inverse tangent or arctangent function tan−1 x or

arctan x is defined on the range −π/2 < tan−1 x < π/2, the same range as for

sin−1 x, but with any real number valid as the argument, x. The inverse cosine

or arccosine function cos−1 x or arccos x is defined over a different range,

0 ≤ cos−1 x ≤ π, with −1 ≤ x ≤ 1.

Exercise 1.17 The sine of a particular angle may be expressed as the fraction

2/
√
5. (a) What is the size of the angle in degrees? (b) If this is one of the

angles of a right-angled triangle, what is the ratio of the lengths of the three sides

to each other? (c) What is the tangent of the smallest angle in the triangle?

n

1.13 Vectors

Vectors occur in many areas of astrophysics and cosmology when describing the

physical properties of systems. A vector is a quantity that has both magnitude and

direction, such as the velocity of a star. In contrast, a scalar has magnitude only.

For example, the temperature of a star is a scalar variable; it may vary from point

to point within a star, but there is no direction associated with each measurement.

A vector may be represented diagrammatically by an arrow, the length of which

specifies the vector’s magnitude and the direction of which is the same as the

vector’s direction. By convention, vectors are printed as bold, italic symbols, e.g.

r, while the magnitude is written as a normal italic symbol, r. Handwritten vector

symbols are written with a wavy underline, e.g. r
∼

(which in the printing trade

means ‘make bold’).

To specify a vector fully, both its magnitude (which is always positive) and its

direction must be stated, e.g. ‘F is a force of 10 N acting vertically downwards’.

The magnitude of F may be written as F = |F | = 10 N, where the pair of

vertical lines (| |) surrounding the vector indicates that we take the magnitude (i.e.

the positive numerical value) of the quantity.

1.13.1 Vector components

Any vector a in three-dimensional space can be resolved into three mutually

perpendicular components ax, ay and az given by

ax = a cos θx (1.47)

ay = a cos θy (1.48)

az = a cos θz (1.49)
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1.13 Vectors

where θx, θy and θz are respectively the angles between the direction of vector a

and the x-, y- and z-axes. The components are written as an ordered set in

brackets, e.g.

a = (ax, ay, az) (1.50)

and the magnitude of a is given by

a =
√
a2x + a2y + a2z (1.51)

In many astrophysics or cosmology problems, only two dimensions are required,

so only two components are considered, as in Figure 1.17 where the vector

f = (fx, fy) is illustrated.

f

fx

fy

y-axis

x-axis

θy

θx

Figure 1.17 Any

two-dimensional vector f

is characterized by two

components, fx and fy, found

by projecting perpendiculars to

the x- and y-axes.

Exercise 1.18 A vector representing the gravitational force acting on a planet

orbiting a star has a magnitude of F = 3.50 × 1022 N and acts at an angle of 30◦

with respect to the x-axis of a particular coordinate system. What are the x- and

y-components of the force?

n

1.13.2 Addition and subtraction of vectors

For the rare case of two vectors a and b having the same direction, addition

is easy: the resultant vector c = a + b is also in the same direction and of

magnitude c = a + b. However, for the more common case of vectors with

different directions, this simple rule does not apply, and addition must be carried

out using graphical methods, such as the triangle rule or the parallelogram rule,

shown in Figure 1.18 for two-dimensional vectors, or in terms of components.

a

b

c
a

b

c

(a) (b)

a + b = c

Figure 1.18 Equivalent methods of adding 2 two-dimensional vectors

graphically: (a) the triangle rule for addition, (b) the parallelogram rule for

addition. To sum more than two vectors, repeat the application of either rule.

Knowledge of the components greatly simplifies the addition, since if c = a+ b,

then cx = ax + bx, cy = ay + by and cz = az + bz. So unless a and b have the

same direction, |c| 6= |a| + |b|. Similarly, if c = a − b, then cx = ax − bx,

cy = ay − by and cz = az − bz .

Note that a vector can always be resolved into ‘component vectors’ along arbitrary

directions at right angles to each other. However, vectors are normally specified in

terms of scalar components tied to the x-, y-, z-coordinate axes.
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1.13.3 Position and displacement vectors

Vectors are frequently used to specify the positions of points of interest. In

three dimensions, the position of a point can be specified by giving its position

coordinates (x, y, z), as shown in Figure 1.19a, but alternatively we can specify

the vector r from the origin to the point (x, y, z). Since the components of r are

(x, y, z), the shorthand for this is r = (x, y, z). The vector r is known as the

position vector of the point (x, y, z), and its magnitude is equal to the distance of

the point from the origin: r =
√
x2 + y2 + z2.

x

y

z

(a)

r

(b)

s

point 1

point 2

(x, y, z)

x

y

z

r1

r2

Figure 1.19 (a) The position

vector r defines the position of a

point relative to the origin. (b)

The displacement vector s

defines the difference in position

of two points with position

vectors r1 and r2, where

s = r2 − r1.

Exercise 1.19 The position vector of the Sun from the Earth has components

ax = 0.90 × 1011 m and ay = 1.20 × 1011 m in a particular coordinate system.

What is the magnitude of this vector and what does the magnitude represent?

n

It is sometimes more convenient to specify the position of a point relative to

another point not necessarily at the origin. In Figure 1.19b, the position of point 2

relative to point 1 is described by the vector s, which is known as a displacement

vector. Since point 1 has position vector r1 and point 2 has position vector r2 the

triangle rule for addition of vectors tells us that r1 + s = r2 or s = r2 − r1. In

general, a displacement vector is the difference between two position vectors.

1.13.4 Unit vectors

It is often useful to divide a vector r by its own magnitude, to produce a unit

vector r̂ defined as

r̂ = r/r (1.52)

r̂ points in the same direction as r, but has unit magnitude, i.e. |r̂| = 1. Note that

|r̂| is dimensionless, not 1 m or 1 unit for example.

l What is the effect of multiplying a scalar by a unit vector?

m The result is a vector whose magnitude is the same as that of the original

scalar, but whose direction is that of the unit vector.

Now, the three components of a vector are each scalars. Consequently, unit

vectors can be used to express a single vector as a sum of three mutually
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perpendicular vectors. For instance, the vector a has components (ax, ay, az) but

it can be written as the sum of three vectors:

a = iax + jay + kaz (1.53)

where i, j and k are unit vectors in the x-, y- and z-directions, respectively.

1.13.5 The scalar product

There are two completely different ways of multiplying two vectors: one produces

a scalar, the other a vector. The scalar product (also called the ‘dot product’) of

two vectors a and b is a scalar equal to the product of their magnitudes multiplied

by the cosine of the angle between their directions:

a · b = ab cos θ (1.54)

An alternative expression, useful if the components of a and b are known, is

a · b = axbx + ayby + azbz (1.55)

Combining these equations, we can also express the angle between the vectors as

cos θ =
axbx + ayby + azbz

ab
(1.56)

where the value of θ is found from the inverse cosine (arccosine) function.

1.13.6 The vector product

The vector product (also called the ‘cross product’) of a and b is a vector with

magnitude equal to the product of the magnitudes of a and b multiplied by the

sine of the angle between them. The direction of the vector product is given by the

right-hand rule, as illustrated in Figure 1.20.

a b

a

b

aa

a b

a b

O

(a)

θ

(b)

plane containing
vectors a and b

Figure 1.20 (a) The vector product. (b) The right-hand rule defines the

direction of the vector product of two vectors. The palm and outstretched fingers

and thumb of the right hand are aligned with the first vector a, until the fingers

can be bent to the direction of the second vector b. The outstretched thumb then

points in the direction of the vector product a× b.

So a × b is a vector with magnitude ab sin θ and direction perpendicular to both
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a and b as given by the right-hand rule.

|a × b| = ab sin θ (1.57)

In terms of the components of the vectors,

a × b = (aybz − azby, azbx − axbz, axby − aybx) (1.58)

Note that the order of the vectors is unimportant in forming the scalar (dot)

product, because cos(−θ) = cos θ, so a · b = b · a, but that the order

of the vectors is crucial in forming the vector (cross) product, because

sin(−θ) = − sin θ, so a× b = −b× a. Note also that some textbooks and

articles use the symbol ∧ rather than × to indicate a vector product, but the

meaning is identical. Finally, you should be aware that there is no mathematical

operation defined as division by a vector, and so expressions such as a/b or a/b
are meaningless and should never be written.

Exercise 1.20 By considering the definition of the scalar and vector products,

evaluate: (a) a · a (b) b × b

n

1.14 Coordinates

The position of a point in space may be described by reference to a set of

perpendicular x-, y-, z-axes, as shown in Figure 1.21. The (x, y, z) values of a

point are called its Cartesian coordinates. These are also the components of the

point’s position vector r = (x, y, z).

(1, 3, 2)

y

x

z

(a)

(x, y, z)

1

y

x

z

(b)

2

1

1 2 3

Figure 1.21 (a) The position of a point is specified by its x-, y- and

z-coordinates. (b) The point for which x = 1, y = 3 and z = 2 has coordinates

(1, 3, 2).

In two dimensions, an alternative to Cartesian coordinates r = (x, y) is plane

polar coordinates r = [r, θ] (see Figure 1.22). Two numbers are still required to

locate a point, but now the distance r and direction θ are specified rather than the

x and y values. (We have also chosen to use square brackets around the pair of

polar coordinates to help distinguish them from the pair of Cartesian coordinates,

though this practice is neither essential nor universally adopted.) The units
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1.14 Coordinates

attached to the two coordinate pairs also differ; Cartesian coordinates have units

of length, whereas plane polar coordinates have units of length and angle.

0

θ

r

y-axis

x-axis

(x, y)

Figure 1.22 Cartesian

(x, y) and plane polar [r, θ]
coordinates.

Coordinate transformations allow conversions to be made between the

coordinates expressed in one system and those in another system, albeit for the

same point in space. To convert two-dimensional Cartesian coordinates into plane

polar coordinates, the transformations are:

r =
√
x2 + y2 (1.59)

and tan θ = y/x (1.60)

where θ is the angle between the x-axis (θ = 0) and r. Conversely, to convert

plane polar coordinates into two-dimensional Cartesian coordinates,

x = r cos θ (1.61)

and y = r sin θ (1.62)

Many other coordinate systems can be devised; Cartesian axes do not provide the

only possible description of a location in space. For example, locations near the

Earth’s surface are often described in terms of latitude, longitude, and height

above mean sea-level. In astrophysics and cosmology, Cartesian coordinates,

whilst valid, often are not the most convenient ones to use, especially where

rotational symmetry exists.

When describing disc-like structures for instance, cylindrical coordinates are

often much more useful. In this case, the position of a point in space is described

by reference to two distance coordinates r and z and an angular coordinate φ, as

shown in Figure 1.23. From the figure, the three-dimensional Cartesian to

cylindrical coordinate transformations are:

r =
√
x2 + y2 (1.63)

cosφ = x/r (1.64)

and z = z (1.65)

whilst the cylindrical to three-dimensional Cartesian coordinate transformations

are:

x = r cosφ (1.66)

y = r sinφ (1.67)

and z = z (1.68)

 r cos φx=φ
y

x

z

(r, ,φ )

r

    

z

r  sin φy=

z

Figure 1.23 In the cylindrical

coordinate system, the position

of a point is specified by its r-,

φ- and z-coordinates.

In the case of spherical symmetry, such as when dealing with stars, spherical

coordinates are even more useful. In spherical coordinates, the position of a point

in space is described by reference to a range coordinate r and two angular

coordinates, the zenith angle θ and the azimuthal angle φ, as shown in

Figure 1.24. From the figure, the three-dimensional Cartesian to spherical

coordinate transformations are:

r =
√
x2 + y2 + z2 (1.69)

cos θ = z/r (1.70)

and sinφ = y/(r sin θ) (1.71)
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whilst the spherical to three-dimensional Cartesian coordinate transformations

are:

x = r sin θ cosφ (1.72)

y = r sin θ sinφ (1.73)

and z = r cos θ (1.74)

φ
1

2

3

θ

φ

r

y

x

z

(a)

y

x

z

(b)

(r, θ, φ )

s

( , 57.7°√14

r sin θ 

r cos θ 
θ

r sin θ  cos φ

y  = r sin θ  sin φ

r

 

x=

z=

71.6°),

Figure 1.24 (a) In the

spherical system, the position of

a point is specified by its r-, θ-

and φ-coordinates. (b) The point

for which x = 1, y = 3, z = 2
has spherical coordinates

(
√
14, 57.7◦, 71.6◦).

Exercise 1.21 In a certain binary star system at a particular instant, the

Cartesian coordinates of one of the stars with respect to a set of axes centred on

the other star are (1.2 × 1010 m, 1.6 × 1010 m, 0.0 m). What are the spherical

coordinates of this star?

n

1.15 Scalar and vector fields

A field is a physical quantity that has a value at each point within a region of

space. So for instance, the altitude of the landscape would constitute a

two-dimensional field (Figure 1.25) and the density of gas within an interstellar

cloud would constitute a three-dimensional field. In each case a single value (of

altitude or density, etc.) can be assigned to each point in two- or three-dimensional

space to represent the physical quantity. Notice that in each of these cases, the

fields are scalar fields – the quantity at each point in space has a magnitude only.

So a three-dimensional scalar field represented by ρ(x, y, z) has a single value ρ
at each point in space (where ρ is the Greek letter rho pronounced ‘roe’).
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(a) (b)
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Figure 1.25 The altitude of the landscape is an example of a scalar field. (a) It

can be represented by a value at each point on an imaginary grid, or (b) as a series

of contour lines connecting locations of equal altitude.

By contrast, a vector field has a magnitude and a direction at each point in space.

For instance, the wind velocity is often represented on weather maps by arrows

(Figure 1.26). The size of each arrow represents the magnitude of the wind

velocity (i.e. the wind speed) at each point and the direction of each arrow

represents the wind direction. The usual weather map shows a two-dimensional

vector field – representing the wind velocity close to the surface of the Earth.

However, we could just as easily have a three-dimensional vector field

representing wind velocity throughout the atmosphere.

arrow points in
the direction of

the wind

length ∝ wind speed

Figure 1.26 The wind

velocity across the UK is an

example of a vector field.

The direction of each arrow

represents the direction of the

wind, whilst the length of each

arrow represents its speed at that

point.

The value of a vector field at a particular point is represented by a certain vector,

but remember that a two-dimensional vector may be represented by two

components (two scalars) and a three-dimensional vector may be represented by

three components (three scalars). So a three-dimensional vector field represented

by U(x, y, z) could be written in terms of its components as a vector (Ux, Uy, Uz)
at each point in space. Pay close attention to the notation here: U(x, y, z)
indicates that the vector field U is a function of three coordinates x, y and z; and

at each point in space it can be represented by a vector whose components are

(Ux, Uy, Uz).

So, just as a three-dimensional vector can be expressed as three independent

scalars – each representing one component of the corresponding vector – a
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three-dimensional vector field can be expressed as a set of three independent

scalar fields, such as Ux(x, y, z), Uy(x, y, z) and Uz(x, y, z). Each scalar field

gives one component of the corresponding vector field at each point in space.

Exercise 1.22 The temperature, pressure, gravitational field and magnetic field

can be defined at each point within a star. Which of these are vector fields and

which are scalar fields?

n

1.16 Matrices

A final topic in the area of manipulating numbers and symbols is that of matrices.

These have uses in many areas of physics from quantum mechanics to general

relativity, and it is in this latter context that you will meet them in cosmology.

A matrix is a set of numbers laid out in a rectangular array of rows and columns,

and represented by a letter. A matrix of n rows and m columns is said to be of

order (n×m), and you should note that the elements are always listed as ‘(rows,

columns)’ not as ‘(columns, rows)’. So, for example, a matrix P of order (3× 4)
has 3 rows and 4 columns and may be written

P =




p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34




A matrix is referred to as a square matrix if n = m.

The individual quantities pij are referred to as elements of the matrix. Two

matrices P and Q can only be equal if they are of the same order (n×m) and all

their corresponding elements are equal, i.e. pij = qij for all values i = 1 to n and

j = 1 to m.

1.16.1 Combining matrices

In order to add together two matrices, or to subtract one from another, they must

be of the same order. Given two matrices P and Q of the same order, with

elements pij and qij respectively, then the sum P +Q is a matrix R whose

elements are given by rij = pij + qij . Similarly, the difference P −Q is a matrix

S whose elements are given by sij = pij − qij . Both R and S are clearly of the

same order as P and Q.

l What are the sum and difference of the following two matrices?

A =




7 11
3 2
4 8


 B =




5 4
13 9
7 2




m The sum of these two matrices is

A+B =




12 15
16 11
11 10
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1.16 Matrices

The difference of these two matrices is

A−B =




2 7
−10 −7
−3 6




Multiplying, or dividing, a matrix by a number (often referred to as a scalar)

simply entails multiplying, or dividing, each element of the matrix by that

number. So given a matrix P with elements pij and a scalar k, the matrix kP has

elements with values kpij , and the matrix P/k has elements with values pij/k.

Multiplication of a matrix by a scalar is clearly commutative, that is, kP = Pk.

Multiplying one matrix by another is also possible. However, a matrix P can only

be multiplied by a matrix Q if the number of columns of P is equal to the number

of rows of Q. Matrices for which this is possible are called conformable. Given a

matrix P of order (a× b) with elements pik and a matrix Q of order (b× c) with

elements qkj , then their product PQ is a matrix R of order (a× c) with elements

rij that are given by the summation over all k as follows

rij =
k=b∑

k=1

pikqkj

An example should make the process clearer.

Worked Example 1.8

Suppose P is a matrix of order (2 × 3) and Q is a matrix of order (3× 2),
Essential skill:

Multiplying matricesshown below, what is the product PQ?

P =

(
1 2 3
4 5 6

)
Q =




10 11
14 15
18 19




Solution

Since the number of columns of P is equal to the number of rows of Q (i.e.

both are 3), the two matrices are conformable, and matrix multiplication is

possible. The product PQ is therefore a matrix of order (2 × 2) with

elements as follows:

PQ =

(
(1× 10) + (2× 14) + (3 × 18) (1× 11) + (2× 15) + (3× 19)
(4× 10) + (5× 14) + (6 × 18) (4× 11) + (5× 15) + (6× 19)

)

PQ =

(
92 98
218 233

)

Note that matrix multiplication is not commutative. That is to say given two

matrices P and Q of order (a× b) and (b× a) respectively, whilst PQ and QP
are both conformable, PQ 6= QP . If P and Q are not square matrices, this is

obvious, since PQ will be a matrix of order (a× a) and QP will be a matrix of

order (b× b), so they cannot possibly be equal. However, the result is still not

commutative even if P and Q are square matrices as the following exercise

demonstrates.
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Exercise 1.23 Given two square matrices P and Q as defined below, what are

the matrices defined by PQ and QP ?

P =




1 0 1
0 −1 0
1 0 1


 Q =




1 −1 1
−1 0 −1
0 1 0




n

1.16.2 Special types of matrices

From the previous section on vectors, it may be apparent that a single row or

column of a matrix has a lot in common with a vector. Both comprise a set of

elements and there exist shorthand ways of expressing all the elements of a vector

or a matrix. In fact, a set of m elements arranged in a single row (i.e. a matrix of

order (1×m)) is called a row matrix or a row vector and may be written as

[P ] = (p1, p2, . . . , pm)

Similarly, a set of n elements arranged in a single column (i.e. a matrix of order

(n× 1)) is called a column matrix or a column vector and may be written as

{Q} =




q1
q2
.
.
.
qn




l What is the result of multiplying a row vector [P ] of order (1×m) by a

column vector {Q} of order (m× 1)?

m The result is a vector of order (1× 1) (i.e. a scalar) whose value is given by

(p1q1 + p2q2 + p3q3 + . . . + pmqm).

l What is the order of the vector obtained when multiplying a column vector

{Q} of order (n× 1) by a row vector [P ] of order (1× n)?

m The result is a square matrix of order (n× n).

Three other special names for matrices are the null, diagonal and unit matrices. A

null matrix has all its elements equal to zero. A diagonal matrix is a square

matrix, all of whose elements are zero except those in the leading diagonal. So a

matrix P is diagonal if all its elements pij = 0 as long as i 6= j. For example the

following is a diagonal matrix of order (3× 3):

P =




5 0 0
0 10 0
0 0 15




An important point about diagonal matrices is that two diagonal matrices of the

same order commute when multiplied together, i.e. PQ = QP if both P and Q
are diagonal matrices of the same order.
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Finally, a unit matrix or identity matrix is a diagonal matrix whose elements on

the leading diagonal are all equal to 1. Such a matrix is often represented by the

symbol I . Multiplying any square matrix by a unit matrix leaves it unchanged, i.e.

IP = PI = P , where P is a square matrix of the same order as the unit matrix I .

1.16.3 Transposing matrices

A transposed matrix is the result of interchanging the rows and columns of a

matrix. For example, if P is a matrix of order (2× 3) given by

P =

(
5 10 15
20 25 30

)

then its transpose, denoted by P ′, is a matrix of order (3× 2) given by

P ′ =




5 20
10 25
15 30




l What are the transpose of (i) a column vector, and (ii) a row vector?

m The transpose of a column vector is a row vector, and the transpose of a row

vector is a column vector, i.e. {P}′ = [P ] and [P ]′ = {P}.

A final result about transposing matrices to state is that if P and Q are two

matrices that are conformable such that PQ = R, then the transpose of R, i.e.

R′ = (PQ)′ is equal to Q′P ′. In other words, if we take the transpose of the

product of two matrices, this is equal to the product of the two transposed

matrices with the order reversed: (PQ)′ = Q′P ′.

1.16.4 The determinant of a matrix

The determinant is a number that may be calculated for any square matrix. For a

square matrix of order 2× 2 as follows:

P =

(
p11 p12
p21 p22

)

the determinant, indicated by |P |, is simply (p11 × p22)− (p21 × p12). For a

square matrix of order 3× 3:

Q =




q11 q12 q13
q21 q22 q23
q31 q32 q33




the determinant is |Q| = q11(q22 × q33 − q32 × q23)− q21(q12 × q33 − q32 ×
q13) + q31(q12 × q23 − q22 × q13). The procedure may be extended to square

matrices of higher orders, but becomes tedious to calculate by hand.

When the determinant of a square matrix is zero, it is referred to as a singular

matrix. In fact, any matrix for which any two rows, or any two columns, are

identical will have a determinant of zero, and so is singular.
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Exercise 1.24 What are the determinants of the following matrices?

(a) A =

(
2 3
4 5

)
(b) B =




1 2 1
2 3 2
3 4 3




n

Note also that the value of a determinant is unchanged if the elements of all the

rows are interchanged with the elements of all the columns. This is equivalent to

saying that the determinant of a matrix is the same as the determinant of the

transpose of that matrix, i.e. |P | = |P ′|. However, the sign of a determinant is

reversed if any two of its columns, or any two of its rows, are interchanged.

1.16.5 Adjoint and reciprocal matrices

It is often useful to obtain the reciprocal of a matrix, ie. P−1 such that

PP−1 = P−1P = I (1.75)

where I is the unit matrix. The reciprocal of a matrix is defined as the adjoint of a

matrix divided by its determinant, i.e.

P−1 = adj P/ |P | (1.76)

where the adjoint of a matrix is the transpose of the matrix of its cofactors.

The cofactor of an element pij of a matrix P is found by (i) crossing out the

entries that lie in the corresponding row i and column j; (ii) rewriting the matrix

without the marked entries and (iii) finding the determinant of this new matrix.

Then if i+ j is an even number, the cofactor of pij is equal to the value found, but

if i+ j is an odd number, the cofactor of pij is equal to minus the value found. An

example should make the process clear.

Worked Example 1.9

Essential skill:

Finding the reciprocal of a

matrix
(a) What is the reciprocal P−1 of the matrix given by

P =




1 6 5
2 5 1
3 4 3




(b) Verify that PP−1 = I .

Solution

(a) First we find the cofactors of each element. We start with the element

p11 = 1. The cofactor of this is the determinant of the 2 × 2 matrix

remaining after we cross out row 1 and column 1. So the cofactor of this

element is (5× 3)− (4× 1) = 11. Since i+ j = 1+ 1 = 2 is even, the sign

remains as calculated.

If we next consider the element p12 = 6, the cofactor is is the determinant of

the 2× 2 matrix remaining after we cross out row 1 and column 2. So the
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cofactor of this element is (2× 3)− (3× 1) = 3. Since i+ j = 1+ 2 = 3 is

odd, the sign is reversed, and so the cofactor is actually −3.

Similarly, we can calculate all the other cofactors, and end up with the

matrix of cofactors:



11 −3 −7
2 −12 14

−19 9 −7




Next we take the transpose of this matrix, and the result is the adjoint of the

original matrix, i.e.

adj P =




11 2 −19
−3 −12 9
−7 14 −7




The determinant of the original matrix is

|P | = 1(5×3−4×1)−2(6×3−4×5)+3(6×1−5×5) = 11+4−57 = −42.

So the reciprocal of the original matrix is

P−1 =
adj P

|P | =




−11/42 −2/42 19/42
3/42 12/42 −9/42
7/42 −14/42 7/42




(b) Multiplying the original matrix by its inverse, we get

PP−1 =




1 6 5
2 5 1
3 4 3


×




−11/42 −2/42 19/42
3/42 12/42 −9/42
7/42 −14/42 7/42




=




(1×−11)+(6×3)+(5×7)
42

(1×−2)+(6×12)+(5×−14)
42

(1×19)+(6×−9)+(5×7)
42

(2×−11)+(5×3)+(1×7)
42

(2×−2)+(5×12)+(1×−14)
42

(2×19)+(5×−9)+(1×7)
42

(3×−11)+(4×3)+(3×7)
42

(3×−2)+(4×12)+(3×−14)
42

(3×19)+(4×−9)+(3×7)
42




PP−1 =




42/42 0/42 0/42
0/42 42/42 0/42
0/42 0/42 42/42


 =




1 0 0
0 1 0
0 0 1




which is the unit matrix, as required.

Summary of Chapter 1

1. Physical quantities are commonly represented by algebraic symbols. The

symbol comprises two parts: a numerical value and an appropriate unit. Any

equations involving physical quantities must have the same units on both

sides.

2. Dimensional analysis may be used to verify that the units on both sides of an
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equation are the same.

3. The rearrangement of numerical or algebraic equations is accomplished by

following the rule that whatever operation is carried out on one side of the

equals sign must also be carried out on the other. Algebraic fractions are

manipulated in exactly the same way as numerical fractions.

4. In order to solve simultaneous equations it is always necessary to have as

many equations as there are unknowns.

5. The following rules illustrate how powers of numbers are manipulated:

ya × yb = ya+b

y−a = 1/ya

ya/yb = ya−b

y1/n = n
√
y

(ya)b = yab

6. A quadratic equation of the form ax2 + bx+ c = 0 generally has two

solutions given by x = (−b±
√
b2 − 4ac)/2a.

7. The imaginary unit i is defined such that i × i = −1.

8. If a variable x is a function of another variable t, we may in general write

x = f(t), where t is the argument of the function.

9. Any number may be written in scientific notation as a decimal number

between 1 and 10 multiplied by 10 raised to some integer power.

10. The number of accurately known digits in the value of a physical quantity,

plus one uncertain digit, is called the number of significant figures. Leading

zeros do not count as significant figures.

11. If two or more quantities are combined, the result is known only to the same

number of significant figures as the least precisely known quantity.

12. Random uncertainties affect the precision of a measurement; systematic

uncertainties affect the accuracy of a measurement. Random uncertainties

may be estimated by repeating measurements. The best estimate of the

measurement is the mean value: 〈x〉 =∑xi/n and the size of the random

uncertainty in any individual measurement is about 2/3 of the spread of the

measurements.

13. The standard deviation sn of a set of measured values xi is the square root of

the mean of the squares of the deviations of the measured values from their

mean value:

sn =

√∑
(xi − 〈x〉)2

n

In the limit of many measurements, the typical distribution of a set of

measurements will follow a Gaussian (normal) distribution. 68% of the

measurements will lie within ±1 standard deviation of the mean value.

14. When counting randomly fluctuating events, the uncertainty in the number

of events is given by the square root of the number of events.
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15. The uncertainty in the mean value of a set of n measurements that have a

standard deviation of sn is σm = sn/
√
n.

16. Any number can be expressed as a power of ten. The power to which 10 is

raised is called the logarithm to the base ten of the resulting number, i.e. if

x = 10a then log10 x = a. Logarithms to the base e (= 2.718 . . .) are called

natural logarithms, i.e. if y = eb then loge y = b (also written as ln y).

17. Logarithms (to any base) may be combined by applying the following rules:

log(a× b) = log a+ log b

log(a/b) = log a− log b

log ab = b log a

18. If two quantities are directly proportional to one another, then a graph of one

quantity plotted against the other will yield a straight line passing through

the origin. In general the equation of a straight line graph has the form

y = mx+ c

where m is the gradient of the graph and c is its intercept with the y-axis.

19. If a relationship obeys a power law, such as y = axb, then a graph of log y
against log x will be a straight line whose gradient is b and whose intercept

is log a.

20. Plane angles may be measured in degrees or radians. An arc whose length is

equal to the circumference of a circle subtends an angle of 360◦ or 2π
radians. Solid angles are measured in steradians. The surface of a sphere

subtends a solid angle of 4π steradians.

21. The trigonometric ratios may be defined using a right-angled triangle (such

as that shown in Figure 1.27) as follows:

sin θ = o/h, cos θ = a/h, tan θ = o/a

right
angle

a

h
o

θ

Figure 1.27 A right-angled

triangle.22. The small-angle approximation is such that when θ is small and in radians,

sin θ ≈ tan θ ≈ θ and cos θ ≈ 1.

23. Trigonometric functions are periodic with period 360◦ or 2π radians. If we

plot a graph of the way one quantity varies with another and get either a sine

curve or a cosine curve, we say in either case that the quantity plotted on the

vertical axis varies sinusoidally. The argument of the functions is not an

angle in degrees but a dimensionless number possibly unrelated to triangles.

24. A general expression for a sinusoidal function of time is y = A sin(ωt+ φ),
where A is the amplitude of the function, the angular frequency is

ω = 2πf = 2π/T and φ is the initial phase of the function at t = 0. The

frequency and period of this function are related by f = 1/T .

25. A vector has both a magnitude and a direction and may be represented by

three mutually perpendicular (Cartesian) components, e.g. a = (ax, ay, az).

The magnitude of such a vector is given by a =
√
a2x + a2y + a2z .

26. Addition or subtraction of vectors may be accomplished by adding or

subtracting the individual components (scalars) or graphically using the

triangle or parallelogram rule.
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27. A unit vector is the result of dividing a vector by its own magnitude, i.e.

r̂ = r/r. If a scalar is multiplied by a unit vector, the result is a vector

whose magnitude is that of the original scalar and whose direction is that of

the unit vector.

28. The scalar product of two vectors is given by a · b = ab cos θ =

axbx + ayby + azbz, where θ is the angle between a and b. The result is a

scalar. The vector product of two vectors has a magnitude given by

|a × b| = ab sin θ, where θ is the angle between a and b. The result is a

vector which points in the direction given by the right-hand rule. In terms of

components, a× b = (aybz − azby, azbx − axbz, axby − aybx).

29. Apart from Cartesian coordinates, other types of coordinate systems include

plane polar, spherical and cylindrical coordinates. Trigonometry may be

used to establish transformations between one system and another.

30. A scalar field is a physical quantity that has a definite value at each point

within a particular region of space. A vector field describes a physical

quantity that possesses both a magnitude and a direction at each point in

space.

31. A matrix is a rectangular array of numbers arranged in rows and columns.

Matrices can be added or subtracted if they are of the same order, and may

be multiplied or divided by a scalar, to produce another matrix of the same

order.

32. One matrix may be multiplied by another matrix if they are conformable,

that is, if the number of columns of the first matrix is equal to the number of

rows of the second matrix.

33. A row vector [P ] consists of a single row of elements, and a column vector

{Q} consists of a single column of elements.

34. A matrix is transposed by switching its row and columns. The transpose of

the product of two conformable matrices is equal to the product of the two

transposed matrices with the order reversed: (PQ)′ = Q′P ′. The

determinant of a matrix and its transpose are identical.

35. The reciprocal P−1 of a matrix P is such that PP−1 = I , the unit (or

identity) matrix. The reciprocal of a matrix is defined as its adjoint divided

by its determinant, i.e. P−1 = adj P/ |P |, where the adjoint of a matrix is

the transpose of the matrix of its cofactors.
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Chapter 2 Stars and planets

Introduction

This chapter will allow you to revise and consolidate your knowledge of the

astrophysics of stars and the planets that orbit them. If you have recently

completed the OU’s Level 2 astronomy and planetary science courses (S282,

S283 and SXR208), then a large part of this chapter will be familiar to you, but

perhaps not all of it.

2.1 Measuring stars and planets

Since stars and planets are the building blocks of the Universe, we begin this brief

review by examining just what stars and planets are and how astronomers go

about measuring their physical characteristics.

A star is a luminous body, composed chiefly of hydrogen and helium, that

generates energy through thermonuclear fusion processes occurring in its interior.

Our Sun is a typical example of a star. The three main parameters determining

the behaviour of stars are their mass, age and composition, and it is various

combinations of these parameters which give rise to a star’s other measurable

characteristics, such as its temperature, luminosity and radius.

l What are the things that astronomers can measure which come from stars and

planets around other stars?

m Virtually the only thing astronomers can measure is the light, or other

electromagnetic radiation, which stars emit or which planets reflect. Some

particles (such as neutrinos or cosmic rays) may be emitted by certain objects

and in the future it may become possible to measure gravitational radiation

too.

Of course astronomers can investigate light and other electromagnetic radiation in

a number of ways – looking at its intensity, its spectrum, how it varies with time,

and so on. But at the root of all measurements of stars is the measurement of light.

A planet is a gaseous, rocky or icy body which orbits a star. Our own Solar

System consists of 4 major rocky planets and 4 gas giant planets, most of which

are themselves orbited by a number of rocky or icy moons; an inner asteroid belt

of small rocky bodies; and an outer Edgeworth–Kuiper belt of small icy bodies;

plus a distant Oort cloud of comets. Several hundred planets around other stars

are now known, but these have all been discovered by looking for the effect they

have on the light emitted by their parent star.

Star names

In antiquity, many bright stars were given individual names and some of

the names we still use today are derived from ancient Arabic names.

Examples include Betelgeuse in the constellation of Orion and Algol in the

constellation of Perseus.
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A more convenient way of naming stars was introduced in 1603 by Johann

Bayer. He suggested naming stars in a constellation in order of brightness

using letters of the Greek alphabet and the genitive of the Latin name of the

constellation. So the brightest star in Orion is Alpha Orionis (α Ori), the

second brightest is Beta Orionis (β Ori), and so on. When the 24 Greek

letters have been used up, the 26 lower case Roman letters a . . . z are used,

then the upper case letters A . . . Q.

Fainter stars, usually invisible to the naked eye, are usually just referred to

by their number in a particular catalogue. The first such catalogue was that

compiled by John Flamsteed in 1725, but this has been superseded by

more extensive catalogues as yet fainter and fainter stars are recorded.

Thus, the seventy-seven thousand five hundred and eighty-first star in the

Henry Draper Catalog (which happens to be a seventh magnitude star in

the constellation of Vela) is referred to as HD77581. Other catalogues

commonly encountered are the Bright Star Catalog (BS numbers) the

Bonner Durchmusterung (BD numbers) and the Córdoba Durchmusterung

(CD numbers). One of the largest star catalogues so far compiled is the

Hubble Space Telescope Guide Star Catalog (GSC numbers), which contains

over 15 million stars brighter than sixteenth magnitude.

A slightly different system is adopted for many variable stars. The letters R

. . . Z (unused in the naming of normal stars) are used for the first nine

variable stars in a constellation. Then the lettering follows the sequence RR

. . . RZ, SS . . . SZ, TT . . . TZ up to ZZ. If yet more variable star names are

needed, the sequence reverts to AA . . . AZ, BB . . . BZ, up to QZ which

would be the 334th variable star in a constellation (leaving out those with the

letter J to avoid confusion with I). After that, variable stars are numbered

V335, V336, etc. which is fortunately a limitless sequence! So for example,

V709 Cas is a fourteenth-magnitude variable star in the constellation

of Cassiopeia, and the 709th such variable star to be identified in that

constellation.

Another system of nomenclature is often used when dealing with

designations in catalogues constructed in different parts of the

electromagnetic spectrum, such as in X-ray astronomy. Here the convention

is often to name objects according to their position in the sky (see

Section 2.3) in terms of right ascension and declination. Thus the X-ray

source corresponding to the variable star V709 Cas mentioned above

is also known as RX J0028.8+5917. This designation informs us that

the star appears in the catalogue of X-ray sources discovered by ROSAT

(Röntgenstrahlung Satellit) and is located at a right ascension of 00 h 28.8 m

and a declination of +59◦17′. The ‘J’ indicates that the coordinates are

assigned in a system known as J2000.0 (rather than the previously used

B1950.0).

As you will appreciate, most stars can have a variety of different names

in different catalogues. As an example, the following list shows names

currently associated with the interacting binary star Vela X-1 (the first X-ray

source discovered in the constellation of Vela).
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GP Vel Vela X-1 3A 0900–403

CPC 0 6891 CPD-40 3072 GC 12502

GEN# +1.00077581 GX 263+03 H 0900–403

Hbg 267 HD 77581 HIC 44368

JP11 1751 LS 1227 1M 0900–403

PPM 313886 SAO 220767 SBC 366

TD1 13466 2U 0900–40 3U 0900–40

UBV 8734 UBV M 15041 1XRS 09002–403

GSC 07681–02303 uvby98 100077581 CD-40 4838

GCRV 25807 1H 0859–403 HIP 44368

MCW 1168 SKY# 17441 4U 0900–40

TYC 7681 2303 1

2.2 Units in astrophysics

Although astrophysicists and cosmologists do use conventional SI (Système

International) units based on the metre, kilogram and second, they also sometimes

use units based on the cgs (centimetre gram second) system instead. So in the

books or scientific papers that you read you may come across, for instance, the

radius of a star expressed in centimetres and the rate of transfer of mass from one

star to another expressed in grams per second. Even more unfamiliar may be the

use of the erg as the cgs unit of energy. 1 erg may be defined as the kinetic energy

possessed by an object of mass 2 g moving at a speed of 1 cm s−1, from which it

may be deduced that 1 erg = 10−7 joules (see Section 5.4). Unfortunately this is

just the way things are, and although it would be very nice if all scientists always

used SI units, in the real world things are not always that well organized!

Astrophysicists and cosmologists sometimes find it convenient to use other units

in certain situations. For instance, when talking about the energies involved in

atomic transitions, the electronvolt (eV) is a convenient unit; when discussing

wavelengths of light the ångstrom (Å) is often used; and when talking about

astronomical distances the astronomical unit (AU) or parsec (pc) are useful. A

summary of conversion factors between some of these alternative units is given in

the Appendices to this document.

Another feature you will find is that astrophysical quantities are often expressed

in terms of units relative to the Sun. The mass, radius and luminosity of the

Sun are usually denoted by the symbols M⊙, R⊙ and L⊙ respectively, where

M⊙ = 1.99 × 1030 kg, R⊙ = 6.96 × 108 m and L⊙ = 3.83 × 1026 W. So a star

which has a mass 12 times that of the Sun would have a mass M = 12 M⊙, whilst

another star with a luminosity of fifty-thousand times that of the Sun would have a

luminosity L = 5× 104 L⊙.

l What is the radius in metres of a star whose radius is given as R = 0.3 R⊙?

m The radius of the star is R = 0.3× 6.96 × 108 m = 2.1 × 108 m.

Finally, another notation that is sometimes encountered in astrophysics or

cosmology is to express variables in terms of a power of ten and a particular

unit. For instance, the radius of a white dwarf star may be written as simply
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R9 = 7.5 where (in this case) R9 is defined as the radius of the star (R) divided

by 109 cm; that is R9 = R/109 cm. You can think of ‘R9’ as ‘the radius of

the star in units of 109 cm’. In this case the radius of the star is therefore

R = R9 × 109 cm = 7.5× 109 cm. Notice that the number represented by R9 is a

dimensionless number, it has no units, and notice also that R9 is defined in this

case using a cgs basis, you will need to be careful to check whether quantities are

defined in terms of cgs or SI units in each case you come across.

l The variable M1 is defined as the mass of a star divided by the mass of the

Sun, that is, M1 =M/M⊙ =M/(1.99 × 1030 kg). If a particular star has a

mass given by M1 = 3.2, what is its mass in kg?

m M =M1 × M⊙ = 3.2 × 1.99 × 1030 kg = 6.4× 1030 kg.

2.3 Positions, distances and velocities

In this section we consider how the positions of the stars may be quantified and

how precise measurements of their positions may be used to infer their distances

and velocities, in some cases.

2.3.1 Observing the positions of stars

The stars appear to us as (almost) fixed points of light scattered on the background

sky. To quantify the positions of celestial objects, a system of coordinates is

adopted which is reminiscent of the system of latitude and longitude on the

surface of the Earth. The celestial equivalents are called right ascension (RA) and

declination (Dec), as shown in Figure 2.1.
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Figure 2.1 Celestial

coordinates are defined in

terms of right ascension and

declination.
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Declination, represented by the Greek lower case letter delta δ, is comparable to

terrestrial latitude. The celestial equator is defined by a projection of the Earth’s

equator out into space. Positions north of the celestial equator are assigned

positive values and are measured in degrees from 0◦ at the equator to +90◦ at the

north celestial pole. The Pole Star (Polaris or Alpha Ursa Minoris) is close to the

north celestial pole. Positions south of the celestial equator are assigned negative

values, such that the south celestial pole is at −90◦. Subdivisions in declination

are measured in arc minutes and arc seconds.

Right ascension, represented by the Greek letter alpha α, is comparable to

terrestrial longitude. The equivalent of the Greenwich Meridian, the zero point for

celestial right ascension, is a circle perpendicular to the celestial equator which

passes through the point where the Sun crosses the celestial equator at the spring

equinox. Right ascension increases to the east of this line and is measured in

hours. Consequently, RA increases from 0 h (running through constellations

such as Cassiopeia, Andromeda and Pisces) through to 12 h (running through

constellations such as Ursa Major, Virgo and Centaurus) before coming full circle

back to 24 h which coincides with the 0 h line. Subdivisions in right ascension are

measured in minutes and seconds, where 1 hour (1 h) = 60 minutes, and 1 minute

(1 min) = 60 seconds (60 s). An angular distance of 1 h on the celestial equator

corresponds to 15◦ (since 360◦/24 h = 15 degrees per hour).

about 20°

Figure 2.2 Distances on

the sky between objects are

quantified in terms of their

angular separation. The

constellation of Orion spans

about 20◦ from Orion’s shoulder

to his knee. ( c© Till Credner,

AlltheSky.com)
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Distances between stars and other objects, as they appear on the sky, are

quantified in terms of their angular separation (Figure 2.2), measured in degrees

or subdivisions of degrees. A constellation may extend over many tens of degrees;

the full Moon or the Sun each subtend an angle of about half a degree, or 30 arc

minutes (30′) as seen from the Earth; whilst the smallest angular size discernible

to the naked eye is about 1′; and the best angular resolution obtained with

Earth-bound optical telescopes is less than 1 arc second (1′′). Whilst the

separation of objects on the sky are often described in terms of the angle between

them, areas of the sky are often described in terms of square degrees, square arc

minutes or square arc seconds.

Figure 2.3 shows a map of part of the sky with a grid of celestial coordinates

superimposed on it. This is near to the north celestial pole, so you should notice

how lines of constant right ascension converge towards the north. Also notice

that with north at the top (increasing declination upwards), east is to the left

(increasing right ascension leftwards). This is the opposite of terrestrial maps,

where east would be to the right and longitude increases rightwards. The fact that

east and west are reversed is a consequence of the fact that celestial maps are

looking ‘outwards’ (away from the Earth) whereas terrestrial maps are looking

‘inwards’ (towards the Earth).
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Figure 2.3 A map of part of the sky with celestial coordinates superimposed.

56



2.3 Positions, distances and velocities

PLAN VIEW

Earth
orbit Sun

1AU

d

d

star
to distant stars

1AU

π
B

view from A ′ view from B ′

π
2π

2π

B′

A′

A

Figure 2.4 An illustration of parallax. The position of a hypothetical nearby

star, situated a distance d away, exhibits a tiny angular shift when viewed from the

Earth at two intervals. The nearby star appears at location A in January and

location B in July. The parallax angle π is defined as half the angular shift

between two such positions, six months apart.

Distances to stars may be measured using the method of trigonometric parallax,

illustrated in Figure 2.4. The angle labelled π is the parallax angle of the star.

(Note: In this case π is not being used to represent the numerical constant

3.141 59. . ..) Using simple trigonometry,

sinπ = 1 AU/d (2.1)

where 1 AU (astronomical unit = 1.5 × 1011 m) is the average distance

from the Earth to the Sun. By definition, a star with a parallax angle

of 1 arcsec (1◦/3600) lies at a distance from the Earth of 1 parsec =

(1.5 × 1011 m)/ sin(1◦/3600) = 3.1 × 1016 m. Since stars are so far away,

the parallax angles of all stars are extremely small, so we can always use the

small-angle approximation. Therefore the distance d is given by

d/pc = 1/(π/arcsec) (2.2)

Parallax angles as small as 10−3 arcsec can now be measured using satellite

techniques, so stars as far away as 1000 pc (1 kpc) can have their distances

measured accurately by this method.

l Barnard’s star has a parallax angle of 0.55 arcsec. What is its distance from

the Earth in parsecs and in metres?

m d/pc = 1/0.55, so d = 1.8 parsec = (1.8 × 3.1× 1016 m) = 5.6× 1016 m.

The parsec and its multiples the kiloparsec, megaparsec and gigaparsec (1 Gpc =

103 Mpc = 106 kpc = 109 pc) are the most widely used units of distance in

astrophysics. However, you will occasionally see distances expressed in that

favourite unit of the science fiction writer, the light-year, where one light-year is

the distance travelled by light in one year: 1 ly = 9.5× 1015 m. Consequently, one

parsec is equivalent to about 3.3 light-years.
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2.3.2 Measuring the velocities of stars

Stars are not static in space, rather they move around the Galaxy with speeds

that are typically of the order of hundreds of kilometres per second. From

an observational perspective, it is convenient to split the overall motion into

transverse and radial components, as illustrated in Figure 2.5. It is only the

transverse component of the velocity that can actually be seen, but since stars are

extremely distant from us, a transverse speed of even (say) a hundred kilometres

per second would still produce an extremely small angular shift on the sky over

the course of one year.

Solar System

d

star

overall velocity

transverse velocity, vt

radial velocity, vr

Figure 2.5 A star’s motion through space can be split into transverse and radial

components. The actual velocity of the star is the vector sum of these two

components, and has a magnitude given by v =
√
v2t + v2r .

Exercise 2.1 The star Tau Ceti has a transverse velocity component of

33 km s−1 and is situated 1.12 × 1014 km away. What is the angular shift of the

star over the course of one year?

n

The angular shift with time is called the proper motion of the star and is usually

represented by the Greek letter mu, µ. The largest proper motion measured is that

of the nearby Barnard’s star for which µ = 10.31 arcsec per year. For most stars

though, the proper motion is so small as to be undetectable. The magnitude of the

transverse velocity is related to the proper motion and distance d of a star by

vt = d tan µ (2.3)

The radial velocity component of a star’s motion can be measured by considering

its spectrum. Light propagates like a wave (see Section 5.10) and like any wave is

subject to the Doppler effect. This effect is familiar to most people in the context

of the change in pitch of a vehicle’s siren as it races towards and then away from

you. Just as the pitch of sound is shifted to a higher frequency as a vehicle

approaches, and a lower frequency as it recedes, so the light emitted by an

astronomical object is shifted to higher or lower frequencies too. Since the speed

of light is constant, a shift to a higher frequency corresponds to a shift to shorter

wavelength (and lower frequency corresponds to longer wavelength). The
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magnitude of the shift depends on the relative speed of motion between source and

observer – the higher the speed, the larger the shift. In particular, the magnitude of

the radial velocity of a star is given by the following Doppler shift formula:

vr = c× ∆λ

λ
(2.4)

where λ (the Greek letter lambda) is the wavelength of a spectral line emitted by a

star (or observed at rest here on Earth), ∆λ is the shift in wavelength of that line

as observed in the star’s spectrum and c is the speed of light. Motion away from

the Earth gives rise to a shift to longer wavelengths (a redshift), whereas motion

towards the Earth gives rise to a shift to shorter wavelengths (a blueshift).

Exercise 2.2 A hydrogen absorption line in the spectrum of a star is observed

to have a wavelength of 4863.5 Å compared to the ‘rest’ wavelength of this

absorption line which is 4861.3 Å. What is the radial velocity of the star?

n

2.4 Spectra and temperatures

Much of this section assumes you have an understanding of the properties of

light. If you wish to revise your understanding of this topic now, please jump

ahead and read Sections 5.7 and 5.10 before returning to here to continue.

The visible spectrum of a star represents the light emerging from its photosphere

– its outer layers – and can be used to determine a great deal about the physical

properties of the star itself. The underlying continuum of a star’s spectrum is

approximately that of a so-called black-body (see Figure 2.6) and is what gives a

star its overall colour. Stars with hotter photospheres will have black-body spectra

which reach a peak at shorter wavelengths, or more towards the blue end of the

visible spectrum.
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Figure 2.6 Black-body

spectra at different temperatures.

Notice that the vertical axis is

plotted on a logarithmic scale.
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Figure 2.7 Graphs of stellar absorption spectra for different spectral classes.

Hydrogen lines in the visible part of the spectrum are labelled Hγ, Hδ, etc. (see

Section 5.7).

Superimposed on top of the black-body continuum, though, is a series of

absorption lines arising as a result of the absorption of light in the atoms present

in the star’s outer layers. These absorption lines may be used to accurately

classify the star, since their relative strengths give a measure of the temperature of

the photosphere (see Figure 2.7). For historical reasons, the seven major divisions

denoting the spectral classification of stars are labelled as O, B, A, F, G, K, M, in

60



2.4 Spectra and temperatures

order of decreasing temperature (see Table 2.1). Each of these spectral classes

may be subdivided, giving a more detailed sequence, e.g. . . . B5, B6, B7, B8, B9,

A0, A1, A2, . . . , where the middle of a spectral class is subdivision 5.

Table 2.1 Temperatures of stars around the middle of each spectral class.

Spectra class Photospheric temperature/K

O 40 000

B 17 000

A 9 000

F 7 000

G 5 500

K 4 500

M 3 000

As indicated by Figure 2.8, broadly speaking the visible spectra of the hottest

stars (O-type and B-type) contain lines due to ionized and neutral helium; those of

somewhat cooler stars (A-type and F-type) contain the strongest hydrogen lines;

whilst those of even cooler stars (G-type and K-type) contain lines due to ionized

metals (such as calcium and iron); and the visible spectra of the very coolest

stars (M-type) contain molecular lines, in particular those of titanium oxide

are prominent. The spectral class of the Sun is G2 which corresponds to a

photospheric temperature of about 5800 K. Occasionally emission lines are seen

in the spectra of stars too, and are generally an indication of energetic processes

occurring in the regions that we see.
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Figure 2.8 The strengths of various absorption lines versus photospheric

temperature.

Exercise 2.3 (a) On the basis of Figure 2.8, what is the temperature of a star

for which the hydrogen Balmer lines and (unspecified) lines due to neutral helium

have equal strength? (b) Using Table 2.1, estimate the spectral class of such a

star.

n
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width w of a spectral line is
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‘rectangular’ profile is identical
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profile.

The strength of a particular absorption or emission line is characterized by its

so-called equivalent width (see Figure 2.9). The total strength of the line is

proportional to its area, defined as the area of the graph enclosed by the line itself

and an extrapolation of the continuum across the line. This area may be more

conveniently represented by the width of a rectangle w which has the same area

but a depth equal to that of the adjacent spectral continuum. Equivalent width

therefore has the same units as those of wavelength, namely nanometres or

ångstroms if dealing with the visible part of the spectrum.

The actual width of a spectral line depends on a number of things, but an

important consideration is the random motions of the atoms from which the line

arises. If these atoms have high speed random motions – some of them moving

towards us, some moving away from us, and others moving in all other directions

– then the spectral line arising from each atom will be Doppler shifted either

towards longer or shorter wavelengths (Figure 2.10) and the resulting wavelength

will obey Equation 2.4. The spectral line we observe is the sum of these individual

Doppler shifted lines, and the result is that a Doppler broadened spectral line is

seen. Doppler broadening of the line can therefore give an indication of the

range of speeds present in the atoms from which the line arises. For this reason,

the actual width of a spectral line is often quoted in terms of a speed.

random motions
of gas atoms

observer

overall Doppler
broadened line

in
d
iv

id
u
al

 D
o
p
p
le

r s
h
if

te
d
 li

n
es

 d
u
e t

o
 ab

so
rp

ti
o
n

λ0

Figure 2.10 Random motions of the atoms from which a spectral line arises

give rise to a range of Doppler shifts. The Doppler broadened spectral line is the

sum of many individual Doppler shifted lines.
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2.5 Luminosities and fluxes

The luminosity of a star is the total energy per second that it radiates. If the

distance to a star is known, then in principle the brightness of the star (i.e. the

total energy received per second per unit area, also known as the flux) can be used

to calculate the star’s luminosity. As the light from a star travels out into space, so

it becomes spread over the surface of an imaginary sphere of radius d, the distance

from the star. Since the surface area of a sphere of radius d is given by 4πd2, the

luminosity and the flux are therefore related according to an inverse square law:

F =
L

4πd2
(2.5)

where F is the flux of the star (in, say, W m−2 or erg s−1 cm−2) and L its

luminosity (in W or erg s−1). In practice, the situation is complicated by the fact

that a certain proportion of a star’s light is absorbed by intervening gas and dust,

and so the relationship between flux and luminosity is not as simple as the above

equation indicates.

Since a star’s spectrum may be approximated by a black-body continuum,

the flux escaping through the star’s surface may be approximated by the

Stefan–Boltzmann law

F ≈ σT 4 (2.6)

Now, the surface of a star is a sphere, so using a similar geometrical argument to

that in Equation 2.5, we may therefore estimate the radius R of a star using the

relationship

L ≈ 4πR2σT 4 (2.7)

where L and T are its luminosity and photospheric temperature respectively and σ
is the Stefan–Boltzmann constant.

In fact, Equation 2.7 is used to define the effective temperature of a star as the

temperature of a black-body source which has the same radius and luminosity as

the star:

Teff =
4

√
L

4πσR2
(2.8)

Exercise 2.4 Use Equation 2.8 to determine the effective photospheric

temperature of the Sun, i.e. the temperature of the photosphere assuming

it radiates as a perfect black-body. (Assume L⊙ = 3.83 × 1026 W,

R⊙ = 6.96 × 108 m, σ = 5.67 × 10−8 W m−2 K−4.)

n

2.6 Astronomical magnitudes

In practice, fluxes and luminosities are not always used, and the related quantities

of astronomical apparent magnitude and absolute magnitude are encountered

instead. The relationship between apparent visual magnitude (represented by V or

mV) and flux in the visual band is shown in Figure 2.11. The brightest stars have
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an apparent visual magnitude around −1 whilst the faintest stars visible to the

naked eye have mV ∼ 6. The magnitude scale is itself logarithmic such that a

difference of 5 magnitudes represents a ratio of 100× in flux. So, the apparent

magnitudes m1 and m2 of two stars with fluxes F1 and F2 are related by

m1 −m2 = 2.5 log10(F2/F1)

or m1 −m2 = −2.5 log10(F1/F2) (2.9)
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Figure 2.11 The relationship between flux in the V band and apparent visual

magnitude. Approximate values of mv are indicated for a number of stars.

l The bright star Rigel A has an apparent visual magnitude mV = 0.12, whilst

the faint star Ross 154 has an apparent visual magnitude mV = 10.45. What

is the ratio of the visual flux of Rigel A to that of Ross 154?

m Dividing each side of Equation 2.9b by −2.5 and then calculating 10 to the

power of each side (recall Equation 1.23), 10(m1−m2)/−2.5 = F1/F2, so,

F1/F2 = 10(0.12−10.45)/−2.5 = 104.132 = 1.355 × 104. Therefore, viewed

from Earth, Rigel A is about 13 600 times brighter than Ross 154.

The apparent magnitude (or flux) of a star is not an intrinsic property of the star

itself – it also depends on the distance to the star and the amount of intervening

absorbing material. By contrast, the absolute magnitude (or luminosity) of a star

is an intrinsic property of the star. The absolute magnitude (represented by M ) is

defined as the value of the apparent magnitude that would be obtained at the

standard distance of 10 pc from a star, in the absence of any intervening absorbing
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matter. Consequently,

M = m+ 5− 5 log10 d−A (2.10)

where d is the distance to the star in pc and A is the amount of interstellar

extinction expressed as an equivalent number of magnitudes. The distance

modulus of a star (or other astronomical object) is defined as the difference

between its apparent and absolute magnitudes, hence from Equation 2.10

distance modulus = m−M = 5 log10 d− 5 +A (2.11)

l The bright star Rigel A has an apparent visual magnitude mV = 0.12 and is at

a distance of d = 280 pc. Assuming there is negligible interstellar extinction

in our line of sight to Rigel A, what is its absolute visual magnitude? What is

its distance modulus?

m Using Equation 2.10, M = 0.12 + 5− (5 log10 280) + 0 = −7.12.

Substituting this value into Equation 2.11, m−M = 0.12− (−7.12) = 7.24.

Absolute magnitudes are related to the luminosities of stars in a similar way to

that shown in Equation 2.9 for apparent magnitudes and fluxes, namely

M1 −M2 = 2.5 log10(L2/L1)

or M1 −M2 = −2.5 log10(L1/L2) (2.12)

Exercise 2.5 The apparent visual magnitudes of Rigel A and Ross 154 are 0.12

and 10.45 respectively, whilst their distances are 280 pc and 2.9 pc respectively.

What is the ratio of the luminosities of Rigel A and Ross 154? (Assume that there

is negligible interstellar extinction along the line of sight to each star.)

n

Apparent and absolute magnitudes can be quoted in any one of several regions of

the spectrum. Commonly these are expressed as U, B, V, R and I, standing for,

respectively, near ultraviolet, blue, visible, red, and near infrared, and are referred

to as the Johnson photometric system. In addition, three further bands in the near

infrared are referred to as J, H and K. The wavelength ranges corresponding

to these regions are shown in Table 2.2. Subscripts on m or M indicate the

waveband in question, alternatively, the apparent magnitudes are themselves

represented by the symbols U , B, V , R, I , J , H and K.

Table 2.2 The standard photometric wavebands.

Waveband Central wavelength Width of band

U 365 nm 70 nm

B 440 nm 100 nm

V 550 nm 90 nm

R 700 nm 220 nm

I 900 nm 240 nm

J 1.25 µm 0.24 µm

H 1.65 µm 0.4 µm

K 2.2 µ m 0.6 µm

The bolometric magnitude of a star is a measure of the total amount of radiation

received from it, i.e. across the whole spectrum. The bolometric correction BC
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is the difference between the bolometric and V-band magnitudes:

BC = mV −mbol (2.13)

and is generally defined to be zero for stars of a similar temperature to the Sun.

2.7 Colours and extinction

The difference between two magnitudes (apparent or absolute) of a single object

in different wavebands is referred to as an astronomical colour. Equations 2.9 and

2.12 show that a difference between two magnitudes is related to a ratio of two

fluxes or luminosities. So, for instance, the quantity (B −R) for a star represents

the ratio of two fluxes in different parts of its spectrum (see Figure 2.12). Since

stars with different temperatures will have different underlying spectral continua,

they will also have different colours. The colour of a star is also therefore a

measure of its photospheric temperature, although it is a somewhat cruder

measurement than looking at the whole spectrum.

Fλ

λ

RB

Figure 2.12 Measurement

of the magnitudes of a star

in two different parts of its

spectrum (such as the B and R

bands) gives a colour (such as

B −R), which depends on the

underlying spectral shape. The

colour is therefore related to the

photospheric temperature of the

star.

The amount of extinction between the observer and a star will affect its colour as

well as its brightness. The extinction in a particular waveband is represented by

the symbol A with a particular subscript, such as AV, AJ, etc. A graph of a

typical extinction law is shown in Figure 2.13, showing that the amount of

extinction is less for the longer wavelength wavebands. For this reason, the

effect of interstellar extinction on the spectrum of a star is to absorb the short

wavelength part more strongly than the long wavelength part. As a result, the light

from a star is said to be reddened – it appears relatively more bright in the

red part of the spectrum than would be expected from its intrinsic spectrum.

In general, the further away a star is, the more extinction it suffers from and

therefore the more its spectrum is reddened.
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Figure 2.13 A graph

of an extinction law,

showing the extinction in

a particular waveband,

relative to that in the V

band (i.e. Aλ/AV), as a

function of wavelength.

Notice that it is

conventional to plot

extinction laws with 1/λ
on the horizontal axis, so

longer wavelengths are to

the left.

l How is the apparent colour of a star (mB −mV) related to its absolute colour

(MB −MV)?
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2.8 The Hertzsprung–Russell diagram

m Using Equation 2.10, MB −MV = (mB + 5− 5 log10 d−AB)
−(mV + 5− 5 log10 d−AV). So MB −MV = (mB −mV) −(AB −AV).

The difference between two extinction values in different bands is called a colour

excess and is represented by the symbol E. So for instance

E(B −V) = AB −AV = (mB −mV)− (MB −MV) (2.14)

The colour excess is therefore a measure of the amount of reddening for a

particular source. In the absence of interstellar extinction, the apparent colour of a

star is the same as its absolute colour.

2.8 The Hertzsprung–Russell diagram

The two quantities that can be measured (or inferred) for a large number of stars

are their luminosity (or absolute magnitude) and their temperature (or spectral

class or colour). A diagram on which stars are plotted according to these two

quantities is known as a Hertzsprung–Russell (H–R) diagram, first drawn up

independently by Ejnar Hertzsprung in 1911 and Henry Norris Russell in 1913.
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Figure 2.14 An H–R diagram

showing where stars tend to

concentrate and indicating the

positions of a few well known

stars.
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The H–R diagram is the single most important diagram in stellar astrophysics –

and an example is shown in Figure 2.14. On this H–R diagram, notice that both

axes are logarithmic and that temperature increases to the left by convention. The

majority of stars (about 90% of those observed) appear to lie along the so called

main sequence which reflects the fact that this is where all stars spend the

majority of their lives.

As well as the spectral classification introduced earlier (which essentially depends

on a star’s photospheric temperature), stars are also assigned a particular

luminosity classification. Stars on the main sequence are assigned luminosity

class V (Roman numeral five), so that the full classification of the Sun is a

G2V star. Other locations where many stars are seen are the red-giant branch

(luminosity class III) and the supergiant branch (luminosity class I). Finally, white

dwarfs are located in the bottom left of the diagram (luminosity class VII). The

full list of luminosity classifications is given in Table 2.3

Table 2.3 Luminosity classification

Luminosity class Description

Ia bright supergiants

Ib supergiants

II bright giants

III giants

IV subgiants

V main sequence (dwarfs)

VI subdwarfs

VII white dwarfs

Using Equation 2.7, lines of constant stellar radius have been plotted on

Figure 2.14. This shows that giant (and supergiant) stars congregate in the upper

right of the H–R diagram, whilst dwarf stars congregate in the lower left. It also

shows that the ‘upper’ main sequence (hot, luminous stars) consists of stars which

are larger than those on the ‘lower’ main sequence (cool, faint stars).

You will often see H–R diagrams plotted with absolute magnitude on the vertical

axis instead of luminosity, and with spectral class on the horizontal axis instead of

photospheric temperature, or indeed any combination of these axes. All such

combinations are equivalent.

l An H–R diagram can be constructed for the stars in a given star cluster, by

plotting their apparent visual magnitude up the vertical axis. This can then be

used to compare their properties, despite the fact that apparent visual

magnitude is not an intrinsic property of the stars themselves. Why is this?

m All the stars in a given star cluster are at about the same distance from the

Earth and will suffer from similar amounts of interstellar extinction. Therefore

their apparent magnitudes will all be related to their absolute magnitudes in

the same way (i.e. m−M = constant for all stars in the cluster). Their

absolute magnitudes in turn are directly related to their luminosities.

Since an astronomical colour is also a measure of the photospheric temperature of

a star, you will sometimes see H–R diagrams with apparent colour, such as

(mB −mV) or (B − V ), or absolute colour, such as (MB −MV), plotted along
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2.9 Masses of stars

the horizontal axis. As noted above, in the absence of significant interstellar

extinction (such as with relatively near by stars), the apparent and absolute

colours are the same.

2.9 Masses of stars

The only systems in which the masses of stars can be measured directly are

binary stars – systems in which two stars orbit around their common centre of

mass, as shown in Figure 2.15. In fact, the majority of stars in the Galaxy are in

binary (or higher multiple) systems, so this is feasible in many cases.

e  = 0.4e  = 0.0

e  = 0.7

(a) (b)

(c)

m1

m2

a1

a2

m1

m2

m1

m2

(d)

m2

m1

e  = 0.9

Figure 2.15 Two stars will orbit around their common centre of mass, marked

with a cross, following elliptical paths. A special case of an ellipse with zero

eccentricity is a circle, as shown in (a), the orbits shown in (b), (c) and (d) have

successively larger eccentricities. The two stars lie along a straight line through

their common centre of mass at all times during their orbits.

The measurement of masses relies on Kepler’s third law, which is itself a

consequence of Newton’s law of gravitation. For two stars of mass m1 and m2 in

circular orbits around their common centre of mass, we may write

(a1 + a2)
3

P 2
=
G(m1 +m2)

4π2
(2.15)

where P is the orbital period of the binary, G is the gravitational constant and a1
and a2 are the distances of the two stars from their centre of mass. From the

definition of centre of mass, the masses and distances are further related by

q =
m1

m2
=
a2
a1

(2.16)
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where q is referred to as the mass ratio of the system.

In the case of visual binaries, where the two stars are seen as separate points of

light on the sky, direct measurements of P , a1 and a2 are possible and

Equations 2.15 and 2.16 can be solved to find m1 and m2.

Worked Example 2.1

In the visual binary system Alpha Centauri, the two stars are observed
Essential skill:

Solving for quantities in a binary

star

to have angular separations from their centre of mass of 8.0 arcsec

and 9.7 arcsec. The system is located 1.31 pc away and the two

stars travel around their common centre of mass in a circular orbit

whose period is 80.1 years. What are the masses of the two stars?

(G = 6.67 × 10−11 N m2 kg−2 and M⊙ = 1.99 × 1030 kg)

(NB. Alpha Centauri is actually a triple system, but the third component

orbits around the other two a great deal further away, and for the purposes of

this calculation may be neglected.)

Solution

The physical separations of the two stars from the centre of mass are found

using trigonometry. (Don’t forget to convert the angles into degrees.)

a1 = 1.31 pc × tan(8.0 arcsec) = 5.08 × 10−5 pc = 1.58× 1012 m

a2 = 1.31 pc × tan(9.7 arcsec) = 6.16 × 10−5 pc = 1.91× 1012 m

So from Equation 2.16, the mass ratio is

m1/m2 = a2/a1 = 1.91× 1012/1.58 × 1012 = 1.21

and from Equation 2.15,

m1 +m2 =
4π2(a1 + a2)

3

GP 2

Putting in the numbers, remembering to convert the period into seconds,

m1 +m2 =
4π2 × (1.58 + 1.91)3 × 1036 m3

(6.67 × 10−11 N m2 kg−2)× (80.1 × 365 × 24 × 3600 s)2

= 3.94 × 1030 kg = 1.98 M⊙

Now, we have two equations containing both m1 and m2 which can be

solved. From the first, m1 = 1.21m2, and substituting this into the

second, (1.21m2 +m2) = 1.98 M⊙. So m2 = 0.90 M⊙ and therefore

m1 = 1.08 M⊙. Clearly both stars have masses comparable to the Sun – one

slightly more massive than the Sun and the other slightly less.

The situation can become a little more complicated than in Example 2.1 for a

number of reasons. First, as you have seen, the orbits may not be circular but

elliptical, and secondly, the plane of the orbit may not be perpendicular to the

plane of the sky (Figure 2.16). In this case, we actually measure the projection of

the separation of the stars, not their true separation. The angle between the plane

of the orbit of a binary star and the plane of the sky is known as the angle of

inclination of the orbit and usually denoted by i.
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to Earth

plane perpendicular
to line of sight

true plane of orbit

semimajor axis a

i

Figure 2.16 The plane of the orbit of a binary may be inclined at an angle i to

the plane of the sky. An orbit that is seen ‘edge-on’ has i = 90◦, whilst an orbit

that is seen ‘face-on’ has i = 0◦.

A more crucial problem is that most binary stars are not visual binaries: they

appear through telescopes as a single point of light, because the angular

separation between the stars is extremely small. However, they may appear as

spectroscopic binaries in which the spectral lines from each component can be

distinguished. As the two stars orbit each other, their spectral lines shift back and

forth periodically as a result of the Doppler effect (see Figure 2.17). By measuring

the motion of the Doppler shifted spectral lines, the projected orbital speeds of the

two stars can be determined at various positions in the orbit. These values can

then be plotted as a so-called radial velocity curve, as shown in Figure 2.18. For

elliptical orbits, the radial velocity curves have more complex shapes, as shown in

Figure 2.19, but the principle behind the measurement is identical.

Earth

A

A + B

B

AB A B A + B

A

B

AB

B

A

Figure 2.17 In a spectroscopic binary, the spectral lines from each star shift

back and forth periodically as the stars move towards and away from the observer.

l Why is it impossible to construct radial velocity curves for stars whose orbits

are face-on to the line of sight (i = 0◦)?

m There will be no component of velocity due to the orbital motion along the

line of sight, so no Doppler shift. Such stars would show a constant radial

velocity, namely that of the centre of mass of the system.
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Figure 2.18 A simple radial

velocity curve for the case of

circular orbits seen edge-on

(i = 90◦). The speed of the

centre of mass of the binary

is denoted by V , whilst the

maximum speeds of the two

stars with respect to their centre

of mass are v1 and v2. The

individual radial velocity curves

for the two stars trace out

sinusoidal curves of amplitude

v1 and v2, both with period P .
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Figure 2.19 Radial velocity

curves for elliptical orbits. The

plane of the orbits on the sky is

the same in each case (i = 90◦),

but the orientation of the orbits

varies between (a), (b) and (c).

For circular orbits seen at an angle of inclination i, the measured constant speed

around the orbit is equal to the true speed multiplied by the sine of the angle of

inclination:

vmeasured = vtrue × sin i (2.17)

and the true orbital speed is just the circumference of the orbit (of radius a)
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divided by the orbital period P :

vtrue = 2πa/P (2.18)

By combining these two equations, we may write the measured speeds of the two

stars as

v1 = (2πa1 sin i)/P (2.19)

and v2 = (2πa2 sin i)/P (2.20)

Furthermore, by combining Equations 2.16 and 2.19, the mass ratio of the system

is then simply the ratio of the two measured orbital speeds:

q =
m1

m2
=
v2
v1

(2.21)

Finally, by combining Equation 2.19 with Kepler’s law (Equation 2.15) we can

define the so-called mass function of each star as follows:

f(m1) =
m3

2 sin
3 i

(m1 +m2)2
=

4π2a31 sin
3 i

GP 2
=
Pv31
2πG

(2.22)

f(m2) =
m3

1 sin
3 i

(m1 +m2)2
=

4π2a32 sin
3 i

GP 2
=
Pv32
2πG

(2.23)

The right-hand side of each of these equations contains measurable quantities (the

orbital period and measured speeds of the stars, as well as constants), but the two

equations can only be solved for the masses if we have other information about

the angle of inclination of the plane of the orbit. Such information may be

available if the system is also an eclipsing binary (Figure 2.20). In this case, the

two stars periodically pass in front of one another, and the angle of inclination of

the orbital plane must be close to 90◦.
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Figure 2.20 In an eclipsing binary, the stars periodically pass in front of one

another causing dips in brightness. In the example shown here, the smaller star

(A) is the brighter of the two so the deepest eclipse occurs when it passes behind

the larger, fainter star (B).
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Worked Example 2.2

The interacting binary star Centaurus X-3 consists of a neutron star and a
Essential skill:

Solving for quantities in a binary

star

giant companion star in circular orbits around their common centre of mass.

The neutron star emits pulses of X-rays every 4.84 s and the companion star

eclipses the neutron star once every 2.09 days. From the nature of this

eclipse, the inclination of the orbit is estimated to be 70.0◦. Measurements

of the Doppler shift of lines in the spectrum of the companion show its

observed orbital speed to be 24.4 km s−1 whilst measurements of the

Doppler shift of the X-ray pulsations from the neutron star show its observed

orbital speed to be 414 km s−1. Calculate the masses of the two stars.

(G = 6.67 × 10−11 N m2 kg−2 and M⊙ = 1.99 × 1030 kg.)

Solution

Using Equation 2.21, the mass ratio of the system is simply

q = m1/m2 = v2/v1 = 24.4 km s−1/414 km s−1 = 0.0589

Using Equation 2.22, the mass function of the neutron star is

f(m1) =
m3

2 sin
3 i

(m1 +m2)2
=
Pv31
2πG

=
(2.09 × 24× 3600 s)× (414 × 103 m s−1)3

2π × 6.67 × 10−11 N m2 kg−2

= 3.06 × 1031 kg = 15.4 M⊙

Now, the left-hand side of this equation can be rearranged by dividing top

and bottom by m2
2 to give

m2 sin
3 i

(m1/m2 + 1)2
= 15.4 M⊙

and then substituting for the mass ratio from above, this becomes

m2 sin
3 i

(0.0589 + 1)2
= 15.4 M⊙

so m2 = 15.4 M⊙ × 1.121/(sin 70.0◦)3 = 20.8 M⊙ and therefore

m1 = 0.0589 × 20.8 M⊙ = 1.23 M⊙. So the mass of the companion star is

20.8 times that of the Sun, whilst the mass of the neutron star is 1.23 times

that of the Sun.

From measurements such as those discussed above, stellar masses have been

found to lie in the range from about 0.1 M⊙ to about 50 M⊙. The masses of stars

lying in various parts of the H–R diagram are shown in Figure 2.21. The stars on

the upper main sequence (hot, luminous, large stars) are clearly more massive

than those on the lower main sequence (cool, faint, small stars). Table 2.4

summarizes the masses, radii, luminosities and effective temperatures of stars on

the main sequence.
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Figure 2.21 The H–R diagram showing stellar masses (M /M⊙) found in

various locations.

Table 2.4 Physical characteristics of stars on the main sequence.

Mass/M⊙ Radius/R⊙ Luminosity/L⊙ Effective temperature/K

0.1 0.13 0.001 2500

0.5 0.25 0.03 3800

1.0 1.0 1.0 6000

1.5 1.2 5.0 7000

3.0 2.4 60 11 000

5.0 3.5 450 14 500

15 7.0 17 000 28 000

25 10 80 000 35 000

40 18 500 000 38 000

Exercise 2.6 Use Equation 2.7 to verify that the luminosity of a 5 M⊙ star with

radius 3.5 R⊙ and effective temperature 14 500 K is indeed about 450 L⊙ as

shown in Table 2.4. (Assume L⊙ = 3.83 × 1026 W, R⊙ = 6.96 × 108 m and

σ = 5.67× 10−8 W m−2 K−4.)

n
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2.10 Life cycles of stars

From one day to the next, the brightness, temperature and size of the Sun seem to

be reasonably constant. However, stars do indeed evolve and change, but for the

majority of stars these changes occur on such long timescales that they cannot be

observed directly. The H–R diagram provides us with a snapshot in time of stars

in various stages of their evolution. Densely populated regions of the H–R

diagram indicate locations where stars spend a large portion of their lives,

whilst sparsely populated regions may indicate combinations of temperature and

luminosity that stars pass through relatively quickly.

Observational and theoretical evidence points to dense interstellar molecular

clouds as being the place where star formation begins. An external trigger

mechanism is believed to cause a cloud to start contracting under the influence of

gravitational forces. As contraction of a dense cloud continues, it is thought that

the cloud fragments into smaller parts, each of which may continue to contract

further. This gravitational contraction is accompanied by a rise in temperature

throughout the fragment, though this is moderated by the escape of radiation.

Eventually the contracting fragment may be considered to be a protostar. Some

protostars are seen to exhibit bipolar outflows as well as discs of material which

may be planetary systems in the process of formation.

When the temperature in the core of the protostar rises sufficiently, nuclear fusion

reactions begin. This provides the energy source to prevent further contraction

and at this stage the protostar has reached the region of the H–R diagram referred

to as the main sequence. In particular, the track along which newly formed stars

lie is known as the zero-age main-sequence (ZAMS). The time for a protostar to

reach this stage is generally less than about 108 years – the more massive the

fragment, the shorter the timescale (see Table 2.5).

Table 2.5 The time for

protostars of various masses to

reach the main sequence.

Mass/M⊙ Time to reach

main sequence/yr

0.5 1.5× 108

1.0 5.0× 107

1.5 1.8× 107

3.0 2.5× 106

5.0 5.8× 105

9.0 1.5× 105

15.0 6.2× 104

Nuclear fusion is the source of energy that powers main sequence stars, and the

main sequence represents the stable configuration of stars of different mass but

similar composition, converting hydrogen into helium. The processes all rely on

the fact that the mass of a single nucleus of helium-4 is less than the mass

of the four protons (hydrogen nuclei) from which it was formed. The mass

deficit is converted into energy and consequently, for each helium-4 nucleus that

is formed, about 25 MeV of energy is released into the core of a star in the

form of electromagnetic radiation and kinetic energy. The detailed nuclear

reactions that are responsible for converting hydrogen into helium depend on the

core temperature, and therefore the mass of a star. For stars less than about

1.5 M⊙ (lower main sequence stars) the proton–proton chain dominates (see

Figure 2.22), whilst for more massive stars (upper main sequence) reactions

involving carbon, nitrogen and oxygen as catalysts are dominant and comprise the

CN cycle (see Figure 2.23).
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Figure 2.22 The

proton–proton chain. Two

hydrogen nuclei (11H or protons)

combine to form a nucleus of

deuterium. The deuterium

nucleus reacts with another

proton to form a nucleus of

helium-3. Finally two helium-3

nuclei react to form a nucleus of

helium-4 with the ejection of

two protons. The net result is

that four protons have been

converted into a nucleus of

helium-4.
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Figure 2.23 The CN cycle. A nucleus of carbon-12 captures a proton to

form nitrogen-13. This nucleus undergoes beta-plus decay (β+-decay) to form

carbon-13. Two more protons are captured in turn to produce nitrogen-14 then

oxygen-15, before another β+-decay produces a nucleus of nitrogen-15. This

nucleus captures one final proton and converts into a nucleus of carbon-12 with

the ejection of a helium-4 nucleus. The net result is that four protons have been

converted into a nucleus of helium-4, with the carbon-12 acting as a catalyst,

since it is returned at the end of the cycle. (Nuclear decay processes are discussed

in Section ??.)

The lifetime of a star on the main sequence decreases rapidly for increasing mass,

as shown in Table 2.6. Stars of mass much less than about 0.1 M⊙ never reach

sufficiently high core temperatures to trigger hydrogen fusion reactions and so

instead they become brown dwarfs. At the other extreme, stars of mass greater
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than about 100 M⊙ (the upper limit is very uncertain) are not stable because their

radiation pressure is so great as to overcome the gravitational forces holding them

together. The least massive stars are in fact the most common, and a graph

illustrating the relative number of stars that are born with a given mass is shown in

Figure 2.24. Note, however, that recent observations indicate that this graph may

turn over below about 0.5 M⊙ (i.e the blue line on Figure 2.24). In other words

the commonest stars have a mass of about half that of the Sun, and there are

relatively fewer low-mass stars and brown dwarfs.

Table 2.6 The lifetime of a

star on the main sequence.

Mass/M⊙ Lifetime on

main sequence/yr

0.1 1.0× 1012

0.5 2.0× 1011

1.0 1.0× 1010

1.5 3.0× 109

3.0 5.0× 108

5.0 1.5× 108

15.0 1.5× 107

25.0 6.0× 106

40.0 2.0× 106

Figure 2.24 The relative number of stars that are born with a given mass.

Notice that both axes of this histogram are logarithmic. Roughly speaking for

every one star born with a mass around 50 M⊙, there will be about 50 with a mass

of more than 10 M⊙, 200 with a mass of 5 M⊙ or more, 2000 with a mass of at

least 2 M⊙, 10 000 with a mass above 1 M⊙, and 50 000 stars with a mass of at

least 0.5 M⊙. The red line is the conventional picture, the blue line indicates the

results of recent observations.

When the hydrogen in the core of a main sequence star is exhausted, the core

contracts and its temperature rises. The star begins to move away from the main

sequence on the H–R diagram. The transition to the next phase is accompanied by

a contraction and heating of the core, but a swelling of the diameter of the star by

typically a factor of ten, and a cooling of the surface. The star becomes a red

giant and moves to rapidly occupy the upper right of the H–R diagram (see

Figure 2.25). At a core temperature of around 108 K, helium burning is initiated,

with hydrogen continuing to burn in a shell surrounding the core. Helium fusion

occurs via the triple-alpha process in which three helium nuclei fuse to form a

nucleus of carbon-12. In stars of mass less than about 2.5 M⊙, the electrons in the

core first become degenerate – a state in which the pressure is nearly independent

of temperature. As a result, an unstable ‘run-away’ process develops and produces
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an explosive release of energy in the core of the star. This helium flash, as it is

known, occurs on a timescale of only a few hours. After depletion of helium in

the core, helium burning continues in a shell surrounding the core, with hydrogen

burning still occurring in another shell further out. During this phase, periodic

shell helium flashes occur, each accompanied by a further swelling of the red

giant. The giant phase as a whole lasts for approximately 10% of the main

sequence lifetime of a particular star.
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Figure 2.25 Theoretical evolutionary tracks on the H–R diagram for stars of

various masses.

During and after the giant phase, most stars pass through a region on the H–R

diagram called the instability strip. Here a star undergoes pulsations that lead to

a regular variation in the star’s luminosity. At around this stage, some stars eject a

shell of material, of mass 0.1 M⊙ to 0.2 M⊙, called a planetary nebula. In

relatively low-mass stars, like the Sun, carbon nuclei are the furthest that nuclear

fusion can progress. Therefore, after depletion of helium in the core, the core

again collapses until electron degeneracy sets in. The pressure resulting from this

quantum-mechanical effect is able to halt collapse and the result is a white dwarf

star. With no further nuclear reactions possible, the white dwarf slowly cools and

eventually disappears from view.

More massive stars have a more interesting fate. After the triple-alpha process,

further nuclear reactions are initiated in the core, each one building heavier nuclei

than the one that preceded it. As each new reaction sequence is initiated, a new

‘flash’ occurs as the star readjusts its internal structure, and the star moves around

the H–R diagram. The star will eventually swell into a supergiant and its internal

structure will somewhat resemble that of a onion (Figure 2.26) consisting of

concentric shells burning ever heavier nuclei the closer to the centre they are

found.
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Figure 2.26 The ‘onion

shell’ structure of an evolved

supergiant star with a mass of

15 M⊙ and a radius of 500 R⊙.

Notice this diagram is drawn

approximately to scale with each

of the three parts magnified by

×50 compared with that further

out. The innermost zone (#1)

contains nuclei of silicon and

sulfur with silicon burning

to produce iron and nickel.

Surrounding this, oxygen burns

to silicon in shell A and zone #2

contains oxygen, magnesium

and silicon. Neon burns to

oxygen and magnesium in shell

B and zone #3 contains oxygen,

neon and magnesium. Carbon

burns to neon and magnesium in

shell C and zone #4 contains

carbon and oxygen. Helium

burns to carbon and oxygen in

shell D and zone #5 contains

helium. Finally hydrogen

burns to helium in shell E and

zone #6 contains material

with essentially the original

proportions of hydrogen and

helium from which the star

formed.

Nuclei of iron, nickel and cobalt represent the furthest limit of nuclear fusion.

To progress to yet more massive nuclei, more energy must be put in than is

returned by the fusion reaction. Consequently these reactions are not energetically

favourable for the star. With no further source of energy, the iron core of a

massive star will therefore collapse in a matter of seconds. The density in the core

of the star becomes comparable to that of an atomic nucleus, and the collapse is

only halted by the quantum-mechanical effect know as neutron degeneracy

pressure. As the collapse ceases, a shock wave is launched through the outer

layers of the star which causes the outer layers to be explosively expelled. This is

called a type II supernova explosion. In the explosion, rapid nuclear processes

take place producing elements even heavier than iron, and the atoms formed are

then thrown out into space. The remnant of the core left behind is a neutron star,

whilst the expanding cloud of debris may be observable for a few thousand years

as a glowing supernova remnant.
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2.11 Stellar endpoints

Two possible end-points of stellar evolution have been mentioned: low-mass stars

will end their lives as white dwarfs, whilst more massive stars will end up as

neutron stars after undergoing a supernova explosion. A comparison between the

properties of these types of object is shown in Table 2.7.

Table 2.7 A comparison of the properties of white dwarfs and neutron stars.

White dwarf Neutron star

mass < 1.4 M⊙ ≈ 1.4− 3.0 M⊙

radius ≈ 104 km ≈ 10 km

density ≈ 109 kg m−3 ≈ 1018 kg m−3

In both white dwarfs and neutron stars, angular momentum is conserved when the

core of a star collapses, and so newly formed white dwarfs and neutron stars are

likely to rotate very rapidly. Pulsars are rapidly rotating, highly magnetized,

neutron stars which produce beamed radio emission. As the star rotates, the beam

is swept around the sky. If the orientation is such that the beam sweeps across the

Earth, regular pulses of radio emission can be observed repeating at the pulsar

rotation period (typically a few milliseconds to the order of seconds).

For stellar cores with a mass in excess of around 3 M⊙, it is believed that neutron

degeneracy pressure is insufficient to prevent even further collapse. The result is a

black hole – an object with such an intense gravitational field that its escape speed

exceeds the speed of light (see Section 5.4 for a discussion of escape speed).

White dwarfs, neutron stars and black holes, collectively referred to as compact

objects, are observed in a variety of binary star systems. If the system has evolved

such that the two stars in the binary are relatively close together, it is possible for

material to transfer from the companion (normal) star onto the compact object

with the result that high-energy electromagnetic radiation is emitted from the

system. The evolution of each of the stars in such a binary will in general be

modified by the presence of the other star and a huge variety of phenomena are

observed in these accretion-powered compact binaries.

2.12 Planetary structure

When stars explode as supernovae, they seed the interstellar medium with

nuclear-processed material (elements heavier than hydrogen and helium) which

can be incorporated into newly forming stellar systems and provide the raw

material for the formation of planets. In this section we briefly summarise the

structure of the planets in our Solar System as an introduction to the likely planets

that might be found around other stars.

2.12.1 Terrestrial planets

The terrestrial planets of the Solar System include Mercury, Venus, the Earth

and Moon, and Mars. In addition, some of the larger satellites of the outer
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planets, such as Io, Europa, Ganymede, Callisto and Titan, are considered to be

terrestrial-like bodies and have similar composition or structure in some cases.

Detail of the internal structure of Earth is provided by both direct and indirect

evidence. Composition of the lithosphere, that is the crust and upper mantle, can

be determined by examination of key rock types. The structure and composition

of the deep mantle and core is revealed from the properties and response of

seismic waves that pass through the planet. Similar studies of other terrestrial

planets may be carried out from planetary landers or satellites.
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Figure 2.27 The internal structure of terrestrial planets.

Such studies allow the definition of various zones within a planet’s structure, as

shown in Figure 2.27. The asthenosphere of a planet is the zone where pressure

and temperature are sufficiently high to allow a material to flow, even in its

solid state. Consequently, in this zone the internal heat is mainly transferred

surfacewards by convection. The lithosphere of a planet is defined as the rigid

outermost layer that cannot convect. Instead, the internal heat is carried through it

by conduction. On geologically active worlds, such as Earth and Io, internal

heat can also be transported by advection through the lithosphere by volcanic

processes. In addition, heat is also transferred to Earths surface by wholesale

recycling of the lithosphere. This results in a phenomenon known as plate

tectonics, which helps describe the movement of lithospheric plates. The Earths

lithosphere consists of oceanic and continental crust, and the uppermost part of
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the mantle. Convective and conductive processes of heat transfer can occur

equally well in ice-dominated bodies as well as silicate bodies.

The accretion and final assembly of Earth and other terrestrial planets is thought

to have followed a similar pattern of evolution. As a consequence, their layered

structure must have been the result of differentiation and element partitioning that

operated during and after their assembly from colliding planetary embryos. The

differentiation came about as a result of melting following energy release during

these collisions.

There are several possible sources of heating for a terrestrial planet. Primordial

heat is that retained from processes operating in the early stages of planetary

evolution, and represents one of the important heat sources within terrestrial-like

bodies. Primordial heat includes that derived from the collision and assembly of

planetary embryos, and that delivered to the surface by incoming impactors after

the planet had assembled. It also includes heat released by the separation of

denser components during core formation.

Internal heat generation within terrestrial planets such as Earth is mainly

radiogenic heating which is the result of radioactive decay of 235U, 238U, 232Th

and 40K in their silicate-rich mantle and crustal layers. The amount of radioactive

decay was greater early in a planets evolution because there would have been

considerably more radioactive elements present. This radiogenic heat would have

been augmented by the decay of shortlived isotopes such as 26Al in those early

stages.

Tidal heating is a further process whereby internal heat can be generated over the

long term. In some instances, notably large orbiting satellite bodies such as the

moons of Jupiter, tidal heating becomes the dominant process of generating

internal heat.

Those bodies where heat is either more efficiently retained or continually

generated in significant amounts are geologically active. In larger bodies,

radiogenic sources are likely to continue to be important because they contain

a greater mass of radiogenic elements to begin with, and because cooling is

less efficient due to a lower surface area to volume ratio. The heat retained or

generated within a terrestrial-like planetary body represents a key control in

shaping the nature of the planetary surface. It also controls the rapidity and extent

to which planetary resurfacing has occurred, or continues to occur.

2.12.2 Giant planets

The giant planets of the Solar System are Jupiter, Saturn, Uranus and Neptune.

Data on the interiors of the giant planets can be obtained from measurements

of density, gravitational field, magnetic field, emitted heat and atmospheric

composition.

Jupiter and Saturn probably do not have a definite liquid or solid surface. Current

models of Jupiter and Saturn distinguish five layers, as shown in Figure 2.28. The

two innermost layers constitute a core of rocky and icy materials. This core is

surrounded by layers that are mostly hydrogen and helium, which account for

most of the planets mass. The layer adjacent to the core in Jupiter and Saturn is
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predicted to contain hydrogen in a metallic state. The deep interiors of both

Jupiter and Saturn are very hot (over 15 000 K in the case of Jupiter).
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Figure 2.28 The internal structure of giant planets.

Uranus and Neptune may not have a definite liquid or solid surface. They may

have rocky cores but current models suggest that rocky and icy materials are

not completely differentiated. Surrounding the core is a mantle of mainly icy

materials and around this is a layer of mainly hydrogen and helium. Overall, these

two planets are less dominated by hydrogen and helium than Jupiter and Saturn
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and the layers are probably less differentiated in composition.

Jupiter, Saturn and Neptune emit more energy than they receive from the Sun

(heat excess). The heat excess of Jupiter is thought to be due to the continuing

escape of original accretional heat and heat of differentiation. Saturns heat excess

is thought to have an additional contribution from helium droplets separating out

from metallic hydrogen and sinking. Neptune and Uranus are both thought to

have internal energy arising from continuing heat of differentiation. The cause of

the heat excess for Neptune is still debatable. The cause of the lack of heat excess

for Uranus may be associated with its unusual spin-axis inclination.

The magnetic fields of Jupiter and Saturn are believed to originate in the shell of

liquid metallic hydrogen. The magnetic fields of Uranus and Neptune are thought

to originate in a shell of liquid icy material containing the ions H3O+, OH and

NH+
4 .

The atmospheres of the giant planets have hydrogen, H2, and helium as their

major components. Other molecules detected are reduced forms of the

heavier elements, for example CH4 and NH3. Most of the molecules in the

atmospheres are detected by IR or UV spectroscopy. The Galileo probe used mass

spectrometry to obtain the relative abundances of molecules in the region of

atmosphere it entered. The outermost cloud layer can be identified as ammonia on

Jupiter and Saturn. Clouds of methane have been observed in the atmospheres of

Neptune and Uranus.

Models assuming chemical equilibrium can predict the composition of the lower

cloud layers, but these compositions have not been positively identified by

observation. The Galileo probe detected a very tenuous cloud which could be part

of the ammonium sulfide cloud layer.

The variation of temperature with depth on the giant planets divides the

atmospheres into two regions. In the lower part (the troposphere) the temperature

decreases the further out from the centre we go. The decrease is close to the

adiabatic lapse rate, except for Uranus where the rate of decrease is slower. In the

upper layers of the atmosphere (the thermosphere) the temperature increases

with distance from the centre. Wind velocities on the giant planets are measured,

remotely, by tracking the movement of cloud features. These measurements will

give a velocity that includes the rotation speed of the planetary interior and so this

has to be subtracted. The rotation speed of the interior can be measured from

radio bursts.

On Jupiter and Saturn, there is evidence for a series of deep convection cells

giving rise to the observed pattern of wind velocities. On Jupiter, major changes

in wind velocity correlate with the boundaries between different coloured bands.

There is no such correlation on Saturn.

Jupiter and Saturn have positive wind velocities at the equator. Equatorial wind

velocities can be very high; up to 500 m s−1 on Saturn. The Galileo probe

measured wind velocities on Jupiter directly. These were higher than the values

obtained by Voyager but were only for one latitude. Neptune has a large negative

equatorial wind velocity, and extrapolation suggests that Uranus has a negative

equatorial wind velocity too.

Jupiter, Saturn, Uranus and Neptune all have large magnetospheres produced

when the solar wind and IMF interact with the planetary magnetic fields.
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The main features of the magnetospheres are similar to those of the Earths

magnetosphere. Io contributes to Jupiters magnetosphere. The large angles

between the magnetic and rotation axes of Uranus and Neptune cause the

magnetic field lines to vary substantially with time.

2.13 Extrasolar planets and how to find them

To complete this brief summary of planetary science, we turn to the astrophysics

of planets that orbit other stars. These are variously known as extrasolar planets

or simply exoplanets. Until 1995, no planets had been discovered around main

sequence stars (other than the Sun!). The detection of exoplanets was made

possible through improvements in telescope and detector technology, and by the

fact that many exoplanetary systems do not look much like our Solar System.

In principle, exoplanets can be detected by radiation reflected from the star around

which they are in orbit. However, in the vast majority of cases, current technology

cannot resolve the star and planet because their difference in brightness is so huge.

The only systems in which it is currently possible to image a planet directly are

when the planet and star are widely separated, when the star is very faint (i.e.

a brown dwarf) and the planet is very large (a few Jupiter masses), and the

observation is performed in the infrared where the contrast is less extreme.

A more reliable technique for detecting exoplanets is looking for the occultation

of the host star when an exoplanet transits in front of it. For those systems in

which the orbit is virtually edge-on to our line of sight, the exoplanet will occult

around 1% of the light from the star, causing a periodically repeating small

dip in the star’s lightcurve. The first star to be seen to exhibit such a dip was

HD 209458. The transit lightcurve of this star is shown in Figure 2.29. Careful

measurement of the characteristic U-shaped dip allows the radius of the transiting

exoplanet to be determined. By carefully examining the lightcurves of millions of

stars, several dozen exoplanets have now been found by this technique.
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Figure 2.29 A lightcurve

showing a planetary transit for

the star HD 209458, as observed

by the Hubble Space Telescope.
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Another technique which has successfully discovered several exoplanets relies

on the phenomenon of gravitational microlensing. In his theory of General

Relativity, Einstein proposed that space is curved in the presence of massive

objects. This distortion of space causes the path of light in the vicinity of a

massive object to change. Gravitational microlensing is the name give to the

effect whereby a background star apparently brightens and then fades over

the course of a few weeks when a foreground star passes directly in front of

it. If the foreground star has a planet in orbit around it, and if the position of

the planet happens to line up with the background star too, then an additional

microlensing ‘spike’ may be seen superimposed on the stellar microlensing

profile (see Figure 2.30). The amplitude and duration of the spike can give

information about the mass of the planet.
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Figure 2.30 If a planet is

in orbit around the lensing

star and happens to line

up with the lensed star,

then an extra ‘spike’ is

produced superimposed on

the lightcurve.

Both the transit technique and the microlensing technique rely on very close

alignments in order for the effect to be noticeable. For this reason, searches

for exoplanets that rely on these techniques have to monitor millions of stars

simultaneously in order to find just a few exoplanets. The most successful

technique (at present) for finding exoplanets is not so sensitive to alignment. It

relies on the Doppler effect for its success.

The presence of a planet in orbit around a star will cause the star to execute a

(relatively small) orbit around the centre of mass of the system that can be

detected by the technique of Doppler spectroscopy. By carefully monitoring the

wavelength of spectral lines from the photosphere of the star, its apparent motion

towards and away from us can be detected, as the wavelength periodically shifts

back and forth. The velocities induced by the presence of a planet are typically

rather small – ‘stellar wobbles’ of only a few tens of metres per second are

typical. The radial velocity curve for the first star to be found to host an exoplanet

is shown in Figure 2.31. The amplitude of the radial velocity curve allows the

mass ratio between the star and planet to be found, subject to an unknown factor

of sin i, which accounts for the inclination of the orbit to our line of sight.

Estimating the mass of the star (from its spectral type) then allows an upper limit

to the mass of the planet to be calculated.

Any planet found to produce transits, will necessarily have an orbit close to

edge-on (i = 90◦). For such systems both the radius and the mass can be found

(from the transit and from the radial velocity curve respectively), so allowing the

density of the planet to be calculated.

The first exoplanets discovered tended to be very close to their host stars (and
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hence had very short orbital periods – of the order a few days) and had masses

similar to that of Jupiter. These ‘hot Jupiters’, as they became known, were the

first to be found, simply because they are the easiest to detect. The larger the

planet and the smaller its orbit, the larger the amplitude of the star’s radial

velocity curve and the deeper the transit. Also, shorter period orbits are easier to

detect because one does not have to observe for so long in order to find them.
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Figure 2.31 Measurements

of the radial velocity of the star

51 Pegasi over one orbit. (S.

Korzennik, Harvard University,

Smithsonian Center for

Astrophysics).

Most of the Sun-like stars within a hundred parsec or so of the Sun have been

observed by Doppler spectroscopy for long enough to reveal any planets of

the order of Jupiter’s mass in orbits with periods less than a decade or so.

Furthermore, transit surveys with baselines of a few years are underway to

monitor all of the millions of bright (mV < 13) stars in the sky. As a result of

these programmes, several hundred exoplanets have now been discovered. At

least 10% of stars seem to have planets, and the true fraction may be much higher.

Stars with high metallicity (i.e. a higher proportion of elements other than

hydrogen and helium) seem to be favoured for having planets.

At the time of writing, the known planets range from about 5 Earth masses to

around 20 Jupiter masses, with around half of them in orbits that are closer to

their star than the Earth is to the Sun. Many systems are known to host two or

more planets, and planets are also found in binary or triple star systems. The

science of exoplanets is currently the most rapidly moving field in astrophysics

with new discoveries being reported every month.
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2.14 Astronomical telescopes

This final section of Chapter 2 considers how the characteristics of astronomical

telescopes affect what we can learn about the stars and planets (and for that matter

galaxies and clusters) that are observed with them. We concentrate here on

telescopes that operate in the optical region of the electromagnetic spectrum, but

end the section with a brief mention of telescopes that operate in other wavebands.

2.14.1 Telescope characteristics

One of the key benefits of using a telescope is that it enables fainter objects to be

detected than with the naked eye alone. The light-gathering power of a simple

telescope used with an eyepiece is defined as

light-gathering power = (Do/Dp)
2 (2.24)

where Do is the diameter of the objective (or primary) lens (or mirror) of the

telescope and Dp is the diameter of the eye’s pupil, assuming that all the light

passing through the objective enters the eye. This is proportional to the

light-gathering area of the objective lens or mirror of the telescope. Clearly, the

larger the aperture the more light is collected and focused into the image, and

therefore fainter stars can be detected.

The field-of-view of a telescope is the angular area of sky that is visible through

an eyepiece or can be recorded on a detector, expressed in terms of an angular

diameter. When a telescope is used with an eyepiece, the angular field-of-view is

equal to the diameter of the field stop (i.e. the diameter of the aperture built into

the eyepiece) divided by the effective focal length of the objective mirror or lens.

In symbols:

θ = D/fo (2.25)

where the angular diameter of the field-of-view θ is in radians. When a telescope

is used with a detector in place of an eyepiece, the determining factor here is the

linear size of the detector itself, rather than the field-stop diameter.

The angular magnification indicates by what factor the angular dimension (e.g.

angular diameter) of a body is increased. So if you were to observe Saturn

through a telescope, you would be benefiting from a high angular magnification

which makes the image appear larger even though it is squeezed into the tiny

space of your eyeball. The angular magnification M of an astronomical telescope,

used visually, is defined as the angle subtended by the image of an object seen

through a telescope, divided by the angle subtended by the same object without

the aid of a telescope. By geometry, this can be shown to be equivalent to

M = fo/fe (2.26)

where fo is the effective focal length of the objective lens or mirror system and fe
is the focal length of the eyepiece lens.

Notice that the angular magnification and field-of-view of a telescope both depend

on the focal length of the objective lens or mirror. However, increasing fo will

increase the angular magnification but decrease the field-of-view, and vice versa.
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The nearest equivalent definition to angular magnification that is applicable to

telescopes used for imaging onto a detector is the image scale (sometimes called

the plate scale). Because of the importance of angular measures, the image

scale quoted by astronomers indicates how a given angular measure on the sky

corresponds to a given physical dimension in an image. The most common

convention is to state how many arcseconds on the sky corresponds to 1 mm in the

image. Fortunately, it is very easy to calculate the image scale for any imaging

system, as it depends on only one quantity: the focal length fo of the imaging

system. The image scale I in arcseconds per millimetre is given by

I/arcsec mm−1 =
1

(fo/mm)× tan (1 arcsec)
(2.27)

Note that as the image on the detector becomes larger, the numerical value of I
becomes smaller. Also, since there are 206 265 arcseconds in 1 radian of angular

measure, and since tan θ ∼ θ for small angles measured in radians, Equation 2.27

can be rewritten as

I/arcsec mm−1 =
206 265

(fo/mm)
(2.28)

A final important characteristic of astronomical telescopes is their angular

resolution. The image of a point-like source of light (such as a distant star)

obtained using a telescope will never be a purely point-like image. Even in the

absence of aberrations and atmospheric turbulence to distort the image, the

image of a point-like object will be extended due to diffraction of light by the

telescope aperture. The bigger the aperture, the smaller is the effect, but it is

still present nonetheless. The intensity of the image of a point-like object will

take the form shown in Figure 2.32. The structure shown here is referred to as

the point spread function (PSF) of the telescope. Lens or mirror aberrations

and atmospheric turbulence will each cause the width of the PSF to broaden,

and may cause its shape to become distorted too. However, in the ideal case

when neither aberrations nor turbulence is present, the telescope is said to be

diffraction-limited, and its PSF has the form shown. The width of the PSF, in this

idealized case, is inversely proportional to the aperture diameter of the telescope.

(a)

intensity point
spread function

y
x

(b) x

intensity point
spread function

Figure 2.32 The image of a point-like object is not point-like even under ideal

conditions. (a) The vertical direction represents image intensity. The point spread

function of a point-like object under ideal conditions consists of a central peak

surrounded by concentric ripples. The two-dimensional PSF has the circular

symmetry of the telescope aperture. (b) A slice through (a) along one axis.
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Using the idea of the diffraction-limited PSF, we can also define the (theoretical)

limit of angular resolution for an astronomical telescope. This is the minimum

angular separation at which two equally bright stars would just be distinguished

by an astronomical telescope of aperture Do (assuming aberration-free lenses or

mirrors and perfect viewing conditions). As shown in Figure 2.33b, at a certain

separation, the first minimum of the PSF of one star will fall on the peak of the

PSF of the other star. At this separation, the two stars are conventionally regarded

as being just resolved.

(a) (b) (c)

Figure 2.33 The images of

the two stars in (a) are clearly

resolved, whereas those in (c)

are unresolved. In (b), the first

minimum of one PSF coincides

with the peak of the other PSF.

At this separation the stars are

said to be just resolved.

The angular separation corresponding to the situation in Figure 2.33b is given by

αc = 1.22λ/Do (2.29)

where αc is the limit of angular resolution measured in radians and λ is the

average wavelength of light contributing to the image. As noted above, the limit

of angular resolution arises due to diffraction of light by the telescope aperture

and represents a fundamental limit beyond which it is impossible to improve.

Exercise 2.7 (a) Calculate the ratio of the light-gathering power of a telescope

of diameter Do = 5.0 m to that of one with a diameter of 1.0 m. (b) Compare

the (theoretical) limits of angular resolution of these two telescopes (at the same

wavelength).

n

In practice, for ground-based astronomy, the limit on angular resolution is usually

that imposed by astronomical seeing rather than the diffraction limit of the

telescope. Astronomical seeing describes the effects of the blurring due to

turbulence in the Earth’s atmosphere. At the very best locations on the Earth, such

as the top of a high mountain, the astronomical seeing may result in a point spread

function whose central peak has a full width at half maximum of around 0.5 arc

seconds.

Optical telescopes are often equipped with spectrometers which disperse the

light in order to display a spectrum in the image plane. The heart of a

spectrometer is usually either a prism or a diffraction grating. In the latter case,

the diffraction equation may be written as

d sin θn = nλ (2.30)
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where λ is the wavelength of light, d is the spacing between adjacent lines of the

grating, n is the diffraction order and θn is the angle through which light of the

given wavelength is diffracted in the given order of the spectrum.

l Imagine that you have a spectrometer whose grating has 500 lines per mm,

and is set up with the light falling on it at normal incidence. Calculate the

angles at which light of wavelength 400mm and 600nm will be diffracted in

the first spectral order.

m The line spacing is d = 1/(500 mm−1) = 0.002 mm = 2 µm and the spectral

order, n = 1. Equation 2.30 then gives sin θ = 1× λ/2 µm. So for

λ = 400 nm or 0.4 µm, θ = 11.5◦ and for λ = 600 nm or 0.6 µm, θ = 17.5◦

l How would the angular dispersion of the spectrometer above change if it were

operated such that the second order spectrum was observed?

m The sine of the angle of diffraction would be doubled at each wavelength. So

the short wavelength light would now have a diffraction angle of 23.6◦ and

the long wavelength light would now have a diffraction angle of 36.9◦. The

overall dispersion of the spectrum would therefore increase from

(17.5◦ − 11.5◦) = 6.0◦ to (36.9◦ − 23.6◦) = 13.3◦.

2.14.2 Telescopes in other parts of the electromagnetic
spectrum

Although the discussion above has concentrated on the characteristics of

telescopes that operate in the optical region of the electromagnetic spectrum,

similar principles apply also to those that work in the near infrared or near

ultraviolet wavebands too. The Earth’s atmosphere is reasonably transparent to

optical light as well as some wavelengths of infrared light, although many regions

of the infrared spectrum are absorbed in the Earth’s atmosphere, principally by

water vapour. It is for this reason that ground-based infrared observatories are

sited at high altitude, dry sites around the world. The Earth’s atmosphere does not

transmit much ultraviolet light, and for this reason ultraviolet astronomy is carried

out using space-based satellite observatories.

In fact the only other regions of the electromagnetic spectrum to which the Earth’s

atmosphere is transparent are in the microwave and radio wavebands. Here the

telescopes are of rather different nature, comprising large parabolic dishes which

focus the incoming radio waves onto detectors placed at their focus. As with

optical telescopes, the angular resolution of such a telescope also depends on the

diameter of the dish. However, with radio telescopes it is possible to construct

vast arrays of individual telescopes that operate as a single instrument. Such

arrays can operate with baselines between individual dishes of anything from a

few hundred metres to thousands of kilometres and as a result obtain angular

resolutions of milli-arcseconds or better.

For high energy regions of the electromagnetic spectrum, space-based astronomy

is the solution. Many satellite observatories have been built that operate in the

ultraviolet, X-ray and gamma-ray regions of the spectrum. Ultraviolet telescopes

can use conventional focussing optics, however, this does not work for X-rays or

gamma-rays. Many X-ray observatories focus X-rays using gold-plated, nested,
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conical mirrors. The X-rays reflect off these mirrors at shallow angles (referred to

as grazing incidence) and are focussed onto imaging detectors which count

individual photons. Gamma-ray detectors also count individual high energy

photons, but there is no way of focussing these to form images. One ingenious

technique to form gamma-ray images of the sky uses a grid of opaque and

transparent cells in front of the telescope to cast a ‘shadow’ of the gamma-ray

sources onto a detector from which the spatial distribution of the gamma-ray

emitting sources on the sky may be reconstructed.

This is only an extremely brief summary of non-optical astronomy but it serves as

a reminder that there is far more information to be gleaned about astronomical

objects than using optical telescopes alone. For instance, infrared astronomy is

becoming increasingly important as we look to the very early Universe, where the

light from distant galaxies is hugely redshifted. It is to the study of galaxies and

the Universe as a whole that we turn in the next Chapter.

Summary of Chapter 2

1. Although astronomers do use SI units, they also use cgs units and frequently

employ non-SI units such as the parsec or astronomical unit (both for

distance), the ångstrom (for wavelength), and the erg or electronvolt (both

for energy).

2. Astrophysical quantities are often expressed in terms of units relative to the

Sun (such as L⊙, M⊙ or R⊙). Variables may also be expressed in terms of a

power of ten and a particular unit. For example, R6 = 3.0, where R6 =
R/106 m, implies that the radius in question R = 3.0 × 106 m.

3. A variety of systems are used for naming stars. Some are based on simple

letter designations in order of brightness, others on numerical order in a

catalogue, and yet others are based on the coordinates of a star on the sky.

4. Positions of celestial objects are specified in terms of their right ascension

(α), measured in hours, minutes and seconds, and their declination (δ),
measured in degrees, arc minutes and arc seconds.

5. The magnitude of the tangential velocity of a star is related to its distance (d)

and proper motion (µ) by vt = d tan µ. The magnitude of the radial velocity

is obtained from the Doppler shift as vr = c∆λ/λ.

6. The distance d to a star is related to its trigonometric parallax (π) by d/pc

= 1/(π/arcsec).

7. The spectra of stars are essentially black-body continua with spectral lines

superimposed. The spectral classification sequence (O B A F G K M)

reflects a progression in temperature from hot (∼ 40 000 K) to cool

(∼ 3000 K) stars. O/B-type stars have the strongest helium lines, A/F-type

stars the strongest hydrogen lines, G/K-type stars the strongest lines from

ionized metals, and M stars have molecular lines.

8. The luminosity classification of stars includes class I (bright supergiants),

class III (giants), class V (main sequence dwarfs) and class VII (white

dwarfs).
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9. Hot stars on the main sequence have relatively large mass, radius and

luminosity. Cool stars on the main sequence have relatively small mass,

radius and luminosity. A star’s luminosity L, radius R and effective

temperature Teff are related by L = 4πR2σT 4
eff where σ is the

Stefan-Boltzmann constant.

10. The equivalent width of a spectral line is a measure of its strength. The

actual width of a spectral line may be the result of Doppler broadening and

can indicate the range of speeds of the atoms in which the line originated.

11. Apparent and absolute magnitudes may be measured in any one of several

wavebands, conventionally labelled U B V R I J H K from the near

ultraviolet to the near infrared. Apparent magnitude is related to flux by

m1 −m2 = 2.5 log10(F2/F1) = −2.5 log10(F1/F2)

whilst absolute magnitude is related to luminosity by

M1 −M2 = 2.5 log10(L2/L1) = −2.5 log10(L1/L2)

Apparent and absolute magnitudes are related by

M = m+ 5− 5 log10 d−A

where d is the distance to the star in parsec and A is the interstellar

extinction.

12. In the absence of extinction, flux and luminosity are related by F = L/4πd2.

13. An astronomical colour is the difference between two apparent or absolute

magnitudes in different wavebands, and so is equivalent to the ratio of two

fluxes or luminosities in different parts of the spectrum.

14. Interstellar extinction is progressively less at longer wavelengths, so the

optical spectra of astronomical objects are generally reddened.

15. The Hertzsprung–Russell diagram plots the positions of stars according to

their luminosity (or absolute magnitude) and their temperature (or spectral

class or colour). The main features of H–R diagrams are a main sequence

running from top left (high luminosity and temperature) to bottom right (low

luminosity and temperature); giant branches occupying the top right of the

diagram; and degenerate stars occupying the bottom left.

16. Masses of stars can in general only be directly measured in binary systems

by using Kepler’s third law

(a1 + a2)
3

P 2
=
G(m1 +m2)

4π2

and the definition of mass ratio q = m1/m2 = a2/a1 = v2/v1.

17. Stars are formed by the collapse of fragments of dense molecular clouds.

When the central regions become hot enough for nuclear fusion to be

initiated, the star is born on the zero-age main-sequence of the H–R diagram.

The star remains on the main sequence whilst undergoing hydrogen fusion in

its core by the proton–proton chain or the CN cycle. When hydrogen in the

core is exhausted, helium fusion may begin, and occurs by the triple-alpha

process. In low-mass stars this happens by way of an explosive helium flash.

Other nuclear fusion reactions are subsequently possible in massive stars.
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When nuclear fuel is exhausted the star ends its life in one of several ways,

depending on its mass. Low-mass stars shed their outer layers as planetary

nebulae and the core becomes a white dwarf. Massive stars explode as

supernovae and the core collapses to form a neutron star or black hole.

18. During the formation of stellar systems, planets form from the

nuclear-processed material expelled into the interstellar medium by earlier

generations of supernovae. The Solar System is broadly separated into

terrestrial planets (predominantly rocky and metallic in composition) in the

inner region, and giant planets (predominantly gaseous) in the outer regions.

The terrestrial planets have metallic cores overlaid by rocky mantles; some

of them have atmospheres. The giant planets have small rocky cores,

overlaid by either a thick layer of fluid helium and metallic hydrogen

(Jupiter and Saturn) or liquid icy materials including water, ammonia and

methane (Uranus and Neptune). Above this in each case is a thick

atmosphere composed predominantly of hydrogen and helium.

19. Exoplanets (or extrasolar planets) are known to exist around at least 10% of

Sun-like stars, possible many more. They have been detected mainly by the

techniques of Doppler spectroscopy (measuring the radial velocity of the

host star), transit photometry (measuring the dip in a star’s lightcurve due to

occultation by the planet) and gravitational microlensing (measuring the

additional brightening caused by a planet in orbit around a foreground

lensing star).

20. The main parameters of an optical telescope are its light-gathering power, its

field-of-view, its angular magnification or image scale and its limit of

angular resolution. Increasing the size of the objective lens or mirror of a

telescope increases its light gathering power and improves its angular

resolution. Increasing the focal length of the objective lens or mirror

decreases the telescope’s field-of-view and increases its angular

magnification.

21. The performance of a grating spectrometer is governed by the diffraction

equation d sin θn = nλ.
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Chapter 3 Galaxies and the Universe

Introduction

This chapter will allow you to revise and consolidate your knowledge of

cosmology and the astrophysics of galaxies. If you have recently completed the

OU’s Level 2 astronomy course (S282), then a large part of this chapter will be

familiar to you, but perhaps not all of it.

3.1 The Milky Way – our galaxy

A galaxy is simply a collection of stars and clouds of dust and gas that are bound

together by their mutual gravitational attraction. Our own galaxy (sometimes

called the Galaxy or the Milky Way) is a typical example of a so-called spiral

galaxy. As with stars, virtually the only thing astronomers can measure is the

electromagnetic radiation emitted by the stars and gas of which the galaxy is

composed.

The Milky Way consists of three major, directly detectable structural components

(Figure 3.1): a disc, a surrounding halo and a central nuclear bulge. Pervading

the Galaxy, between the stars, is the gas and dust of the interstellar medium.

These components are embedded in a massive cloud of dark matter, currently

detectable only through its gravitational influence. The directly detectable matter

consists mainly of stars (∼ 90% of the Galaxy’s visible mass), gas (∼ 10%) and

dust (∼ 0.1%). There are about 1011 stars in all, with (very roughly) a total mass

of 1011 M⊙. The gas is almost entirely hydrogen and helium, in a 3:1 ratio by

mass. The hydrogen occurs in the form of molecules (H2), atoms (referred to as H

or HI) or ions (referred to as HII) according to local conditions. The disc of the

Milky Way is about 30 kpc in diameter and 1 kpc thick. The nuclear bulge is

roughly spherical and has a diameter of about 6 kpc. The halo is also thought to

be roughly spherical; its size is difficult to determine but estimates of 40 kpc or so

are common.

40 kpc

30 kpc

1 kpc

6 kpc

 

 

halo
nuclear
bulge

(a)

(b)

disc

halo

nuclear
bulge

disc

Figure 3.1 The structure of

our galaxy showing (a) edge-on

and (b) face-on views of the

major structural components –

the disc, the halo and the nuclear

bulge.

The stars of the Milky Way may be divided into a number of populations, each of

which predominates in a particular region of the Galaxy. The youngest stars, those

of extreme population I, are found mainly in the spiral arms of the disc. The

oldest stars, those of extreme population II, are found mainly in the ancient

globular clusters of the halo. The Sun is one of the intermediate population I stars,

located in the disc between 7.5 kpc and 10 kpc from the centre of the Galaxy.

The disc of the Galaxy is in a state of differential rotation, with stars in the

vicinity of the Sun taking about 2× 108 years to make a complete orbit of the

Galactic centre. The disc is thought to be threaded by bright spiral arms, and there

is also a central bar. The spiral arms are sites of active star formation. Attempts to

trace the arms make use of young, short-lived features of the disc such as bright

HII regions, young open clusters of stars and associations of O and B type stars.

It is thought that the large-scale patterns of star formation that highlight the

spiral arms might be caused by density waves – relatively slow moving patterns

of density enhancement that rotate, as if rigidly, around the Galactic centre.
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Differentially rotating disc material, particularly giant molecular clouds, entering

such regions of enhanced density would undergo collisions with gas already there.

Such collisions may trigger the birth of stars which, given the size of the giant

clouds, would be expected to form in clusters.

The Galactic halo is the most extensive of the directly detectable structural

components of the Milky Way. It is an ancient and relatively inactive part of the

Galaxy. The main constituents of the halo are old stars of population II, containing

few elements other than hydrogen and helium. Stars with this composition are

said to have low metallicity, where, in astronomical terms, all elements other than

hydrogen and helium are referred to as ‘metals’. The total mass of the stars in the

halo is about 109 M⊙ (or 1% of that of the Galaxy as a whole) and about 1% of

the halo stars are contained in globular clusters. These are tight spherical swarms

of stars up to 50 pc across and each containing 105 − 106 members.

The nuclear bulge is the most enigmatic part of the Milky Way due to the high

level of optical extinction between us and it. The bulge seems to be a spheroid of

equatorial diameter about 6 kpc. Its outer regions rotate at about 100 km s−1 and

its total mass is around 1010 M⊙. The bulge consists mainly of population II stars,

though their metallicities seem to be unusually high in many cases. Within the

bulge a number of different features can be identified, including the radio source

Sagittarius A. This complex radio source surrounds the centre of our galaxy, and

at its heart lies the object referred to as Sgr A*. Detailed infrared studies over the

last few years have revealed the motions of several individual stars orbiting

around Sgr A*. By measuring the speeds of these stars, and their distances from

the orbital centre, it has been deduced that Sgr A* is a black hole with a mass of

around 4× 106 M⊙. This black hole is not currently accreting much matter and so

may be regarded as ‘quiescent’, unlike the black holes in active galaxies which

will be described in later sections.

3.2 Other galaxies

Note that much of the terminology discussed in Chapter 2 in relation to stars, also

applies to individual galaxies. To refer to the position of a galaxy, its right

ascension and declination are used, its relative velocity may be measured by the

Doppler shift of its spectral lines and its distance may be referred to in parsecs (or

more likely megaparsecs or gigaparsecs). Moreover the spectrum of a galaxy will

often look rather similar to the spectrum of a star, since the light from a galaxy is

primarily the sum of the light from its constituent stars. We can also talk about the

flux, luminosity, apparent magnitude, absolute magnitude and colour of a galaxy,

in different wavebands, in a similar manner to that which is used for individual

stars.

3.2.1 Classification of galaxies

Mainly according to their shape, most galaxies can be assigned to one of four

different classes: elliptical, lenticular, spiral and irregular. In the modified form of

the Hubble classification scheme (Figure 3.2), the spirals and lenticulars can be

subdivided into barred and unbarred subclasses, whilst the spirals and ellipticals

can be further subdivided into a number of Hubble types.
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Figure 3.2 The Hubble classification scheme for galaxies.

Elliptical galaxies are essentially ellipsoidal distributions of old (population II)

stars. Their three-dimensional shape is difficult to determine, but some at least

appear to be triaxial ellipsoids with very little rotation. The largest galaxies are

the cD galaxies – giant ellipticals which may have been formed in mergers and

which are often found close to the centres of clusters of galaxies. Whereas most

ellipticals are almost devoid of cold gas and dust, these giant elliptical galaxies

can contain 109 M⊙ of hot gas (> 106 K). Lenticular galaxies appear to be an

intermediate class between the most flattened of elliptical galaxies and the most

tightly wound spirals. They show clear signs of a disc and a central bulge, but

they have no spiral arms and little cold interstellar gas. Spiral galaxies have a

disc, a central bulge and often a central bar. Within this class, spiral arms may be

more or less tightly wound and the bulge may be more or less prominent in

relation to the disc. Irregular galaxies are generally chaotic and asymmetric,

though some exhibit a bar and others show traces of spiral structure. Amongst the

nearest galaxies to our own, the commonest type by far are dwarf galaxies – a

class which includes dwarf ellipticals, dwarf spheroidals and dwarf irregular

galaxies. They contain only a few million stars and are difficult to observe

because they look very similar to typical fields of foreground stars. As with stars,

where the smallest are the most common, dwarf galaxies are almost certainly the

most abundant type of galaxy in the Universe.

Galaxy names

The only galaxies beyond our own which are visible to the naked eye are

two irregular satellite galaxies of the Milky Way known as the Small

Magellanic Cloud and the Large Magellanic Cloud, and the spiral galaxy

known as the Andromeda Nebula (or more properly, Andromeda Galaxy).

As their names suggest, the two Magellanic clouds were first brought to the

attention of Western science by Ferdinand Magellan (in 1519) – they are
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visible only from the Southern Hemisphere and so had gone unnoticed by

Europeans until then. The Andromeda Nebula takes its name simply from

the constellation in which it lies. Other prominent galaxies are also named

simply after their host constellation.

With the advent of telescopic observations, several other nebulae were

discovered which were subsequently identified as galaxies. The first

extensive catalogue of such objects was that compiled by Charles Messier in

1784. His original list of 103 objects included the Andromeda Galaxy (as

M31) as well as other galaxies such as the Whirlpool Galaxy (M51) and the

Sombrero Galaxy (M104). These names exemplify the way in which the

brighter or visually spectacular galaxies are named – by a descriptive word

which sums up their appearance.

A more extensive compilation – the New General Catalogue of Nebulae and

Clusters of Stars followed in 1888. The original catalogue, published by

J.L.E. Dreyer listed 7840 objects and was based on lists compiled by the

Herschel family. So, for instance, the Andromeda Galaxy is also known as

NGC224 in this designation. Dreyer added a further 5386 objects in his

first and second Index Catalogues a few years later, giving rise to ‘IC’

designations for a few thousand more galaxies.

With the advent particularly of radio surveys of the sky from the 1960s

onwards, many radio galaxies and quasars were discovered. The first to be

detected were the brightest objects, and designated in a straightforward way.

For instance, Virgo A is the brightest radio source in the constellation

of Virgo, and identical with the giant elliptical galaxy M87. The third

Cambridge survey (3C catalogue) is perhaps the most famous of these radio

surveys, giving rise to names such as 3C273 for the brightest quasar in the

sky. Another nomenclature commonly encountered is that resulting from the

catalogue of active galaxies listed by B. E. Markarian in the 1970s. These

are referred to by the designation ‘Mrk’, thus Mrk335 is an example of a

type of active galaxy known as a Seyfert galaxy.

In recent years, the number of galaxies detected in various surveys, in

different parts of the electromagnetic spectrum, has increased dramatically.

It is no longer always practical to refer to galaxies simply by a number in a

catalogue. Instead, galaxies are commonly referred to by a numerical name

which encodes their position on the sky in terms of right ascension and

declination. Thus PKS2155–304 is an active galaxy (a blazar) discovered by

the Parkes radio survey and located approximately at right ascension: 21 h

55 min, declination: −30.4◦.

Clearly, most galaxies will have a variety of different names in different

catalogues. As an example, the following list shows some of the names

currently associated with the radio galaxy Virgo A mentioned above:
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M 87 NGC 4486 UGC 7654

2A 1228+125 3A 1228+125 APG 152

3C 274 4C 12.45 CTA 54

DA 325 DB 85 DGW65 57

DML87 747 DSB94 254 2E 2744

1ES 1228+12.6 EUVE J1230+12.3 2EUVE J1230+12.3

H 1228+127 H 1227+12 1H 1226+128

IRAS 12282+1240 1Jy 1228+12 1Jy 1228+126

MCG+02–32–105 Mills 12+1A MRC 1228+126

NRAO 401 NRL 8 NVSS B122817+124004

PKS 1228+127 PKS J1230+1223 PKS 1228+12

PT56 24 RORF 1228+126 RX J1230.8+1223

3U 1228+12 4U 1228+12 VCC 1316

VPC 771 J123049.5+122328 J123049.5+122328

X Vir XR-1 Z 70 – 139 Z 1228.3+1240

1A 1228+12 3C 274.0 Cul 1228+12

DLB87 V12 2E 1228.2+1240 GIN 800

IRAS F12282+1240 1M 1228+127 NAME VIR A

PGC 41361 PKS 1228+126 RX J1230.1+1223

VDD93 163 X Vir X-1

3.2.2 Origin and evolution of galaxies

Galaxies are thought to have formed as a result of tiny density fluctuations in the

expanding cosmic gas produced by the Big Bang. These fluctuations grew in

strength as over-dense regions attracted more matter due to their enhanced

gravitational pull. Spiral galaxies formed as gas cooled and settled onto regions of

higher density, with a disk forming due to the angular momentum of the material.

Elliptical galaxies formed either by mergers of smaller spiral galaxies, or by gas

cooling in regions of low angular momentum.

Using deep exposures of apparently ‘empty’ regions of the sky, such as the

Hubble Deep Fields, astronomers can detect very faint galaxies which are very

distant and therefore seen soon after their formation in the early Universe. Indeed,

some images reveal sub-galactic objects which may be in the process of merging

to form larger structures such as those we see today in our local neighbourhood.

There is considerable evidence that the interaction of galaxies (including mergers

and collisions) can be of great importance in shaping the galaxies we see. It

almost certainly accounts for many of the distorted peculiar galaxies that are

observed, and may be of more general importance in explaining the prevalence of

ellipticals in many clusters of galaxies.

3.2.3 Measuring galaxy properties

Since galaxies are, in general, extended objects rather than point sources, it is

usually most convenient to measure their surface brightness, or flux density per

unit angular area. The surface density of a galaxy may therefore be expressed in

units of W m−2 arcsec−2 and will vary from point to point across its image.
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Continuous lines passing through points of equal brightness are called isophotes.

As it is often difficult to determine the edge of a galaxy, observations are often

confined to the region within some specified isophote. Empirical relations

between surface brightness and luminosity obtained from observations of nearby

galaxies are then used to estimate the luminosity of distant galaxies based on their

flux within a given isophote.

Galactic masses are generally hard to measure. For spiral galaxies, rotation

curves may be used. These are a plot of the circular orbital speed of stars and gas

in the galaxy (measured by Doppler shifts) against radial distance from the

galactic centre. To determine the mass, the observed rotation curve is compared

with a theoretical one, predicted by a model of the galaxy in which mass is

distributed in a plausible way. The theoretical mass distribution is adjusted until a

good fit between model and data is obtained, and the total mass of the galaxy is

then obtained.

Rotation is relatively unimportant in elliptical galaxies, so to determine their mass,

a method based on velocity dispersion is used instead. The velocity dispersion is

a statistical quantity that characterizes the behaviour of a group of stars. Roughly

speaking it provides a measure of the range of speeds of stars along a given line of

sight. For elliptical galaxies, the velocity dispersion is expected to be proportional

to (M/R)1/2, where M is the mass of the galaxy and R is a scale length related to

its radius. The result relies on the stars in the elliptical galaxy moving in random

orbits while bound by each other’s gravity – the generally well-ordered motion in

spiral galaxies means that their masses cannot be estimated in this way.

3.3 The distances to other galaxies

Determining the distances of galaxies is of great importance in astronomy.

Distance information can be crucial to the determination of other galactic

properties; it plays a vital part in investigations of the large-scale distribution of

galaxies; and it may provide the key to understanding the fate of the Universe as a

whole. There are many different methods of distance determination. Those

applicable to galaxies include: geometrical methods, such as those based on the

diameters of material illuminated by supernovae; standard candle methods,

such as those based on Cepheid variables, type Ia supernovae or the apparent

magnitude of brightest cluster galaxies; and methods involving galactic properties

such as the widths of 21 cm emission lines. An example of one of these methods

is presented below.

Worked Example 3.1

Cepheids are a particular class of variable stars with the remarkable
Essential skill:

Distance measurement using

Cepheid variables

property that their period of pulsation is directly proportional to their

absolute magnitude (or luminosity). This means that they can act as a kind of

‘standard candle’ and may be used to determine distances to other galaxies.

Figure 3.3 shows the period–luminosity relationship for Cepheid variable

stars. A certain Cepheid variable star in the Andromeda galaxy is observed

to have a period of 30 days and a peak apparent visual magnitude of
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mV = 20.0. Assuming that the extinction to the Andromeda galaxy is

AV = 0.2, what is the distance to the Andromeda galaxy?
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Figure 3.3 The period–luminosity relationship for Cepheid variables.

Solution

From Figure 3.3 the absolute magnitude of a Cepheid variable star with a

period of 30 days is MV = −4.6. So using Equation 2.10, the distance to the

star can be found as

log10 d = (mV −MV + 5−AV)/5 = (20.0 + 4.6 + 5− 0.2)/5 = 5.88

So, d = 7.6× 105 pc. Since the star is within the Andromeda galaxy, which

itself is small (a few tens of kpc) in relation to this distance, the distance to

the Andromeda galaxy as a whole is about 760 kpc.

The distances to the most remote galaxies may be determined using the Hubble

law which relates distance to redshift. The redshift of a spectrum of a galaxy is

defined as

z =
∆λ

λ
(3.1)

where ∆λ is the shift in wavelength of a particular feature observed in a spectrum

and λ is the wavelength of that feature as it was emitted by the galaxy (or as

observed in an Earth-bound laboratory). In the late 1920s Edwin Hubble

demonstrated that there is a simple relationship between the redshifts of distant

galaxies and their distance from us. This may be expressed as

z =
H0d

c
(3.2)

where d is the distance to the galaxy, c is the speed of light and H0 is a quantity

now known as the Hubble constant. The relationship is illustrated in Figure 3.4.

The best measurement of the Hubble constant currently available places its value
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at 70.4 km s−1 Mpc−1 with an uncertainty of about ±1.5 km s−1 Mpc−1.

Often, you will see the Hubble constant written as a pure number h defined as

h = H0/(100 km s−1 Mpc−1).
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0.001Figure 3.4 A plot of redshift

against distance for some

galaxies.

The observed redshift is a consequence of the overall expansion of the Universe

and, for speeds less than about 10% of the speed of light, is related to the apparent

speed of recession of a galaxy by

z =
v

c
(3.3)

Worked Example 3.2

The Hβ line in the spectrum of a distant galaxy is observed to have a
Essential skill:

Using the Hubble law wavelength of 5007 Å instead of its rest wavelength of 4861 Å. What is the

apparent speed of recession of the galaxy and what is its distance?

Solution

The redshift of the galaxy is calculated using Equation 3.1 as

z =
5007 − 4861

4861
= 0.0300

Then using Equation 3.3, the apparent speed of recession is

v = cz = 3.00 × 105 km s−1 × 0.0300 = 9000 km s−1. Hence,

using Equation 3.2 the distance to the galaxy is d = cz/H0 =
(3.00 × 105 km s−1 × 0.0300)/(70.4 km s−1 Mpc−1) = 130 Mpc.
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3.4 Active galaxies

The various methods for distance determination, taken together, form a galactic

distance ladder (Figure 3.5). Each rung in this ladder requires a calibration

process, the accuracy of which is itself dependent on lower rungs of the ladder.

This means that uncertainties tend to increase as the ladder is climbed.
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Figure 3.5 Methods of measuring astronomical distances. (Some of the

techniques indicated are not discussed here, but their names are included for

completeness.)

3.4 Active galaxies

There is an important class of galaxies known as active galaxies that exhibit rather

more extreme properties than their quiescent relatives.

3.4.1 The spectra of active galaxies

A normal elliptical galaxy is composed mainly of stars, and has an optical

spectrum that looks rather like the optical spectrum of a star, but with fainter

absorption lines. Similarly, a normal spiral galaxy has an optical spectrum that is

the composite of its stars (which show absorption lines) and its HII regions (which

show rather weak emission lines) as shown in Figure 3.6.

An active galaxy has an optical spectrum that is the composite of the spectrum of

a normal galaxy and powerful additional radiation which is often characterized by

broad emission lines in the optical (Figure 3.7). In addition, active galaxies may

emit powerfully in other wavebands, and it is typically their radio or X-ray

emission that reveals the presence of the active galactic nucleus lying at their

centres.
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Figure 3.6 The optical spectrum of a normal spiral galaxy shown

schematically.
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Figure 3.7 The schematic optical spectrum of an active galaxy.

To judge the overall emission from a galaxy it is useful to look at the overall, or

broadband, spectrum, that is extending beyond the visible into the other regions of

the electromagnetic spectrum. To plot such a spectrum it is necessary to use

logarithmic axes, because both the brightness and wavelength vary by many

powers of ten. Furthermore, the vertical axis of the spectrum is most commonly

plotted as a spectral flux density. At any given wavelength, the spectral flux

density in terms of wavelength Fλ can be determined by the following procedure:

1. Using an appropriate detector of unit area, pointed directly towards the

source, measure the rate at which energy from the source is delivered to the

detector by electromagnetic waves with wavelengths in a fixed narrow range

∆λ centred on λ.

2. Divide the measured rate of energy detection by the wavelength range ∆λ to

obtain the detected power per unit area per unit wavelength range. This is

the value of Fλ at wavelength λ. It is typically measured in the SI units of

W m−2 µm−1 (or J s−1 m−2µm−1), or in the cgs units of erg s−1 cm−2 Å−1.
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3.4 Active galaxies

A related spectral flux density, in terms of frequency instead of wavelength, is

also used and denoted by Fν . It is defined as follows:

1. Using an appropriate detector of unit area, pointed directly towards the

source, measure the rate at which energy from the source is delivered to the

detector by electromagnetic waves with frequencies in a fixed narrow range

∆ν centred on ν.

2. Divide the measured rate of energy detection by the frequency range ∆ν to

obtain the detected power per unit area per unit frequency range. This is the

value of Fν at frequency ν. It is typically measured in the SI units of

W m−2 Hz−1 (or J s−1 m−2 Hz−1), or in the cgs units of

erg s−1 cm−2 Hz−1.

In fact there is a unit of spectral flux density Fν commonly used in astrophysics

which is rather simpler. The unit is the jansky (symbol Jy) named in

honour of the radio astronomer Karl Jansky. The conversion is 1 Jy =

10−26 W m−2 Hz−1 = 10−23 erg s−1 cm−2 Hz−1 or 1 W m−2 Hz−1 = 1026 Jy.

The schematic broadband spectrum of a normal galaxy, plotted as Fλ versus λ,

is shown in Figure 3.8a. The peak occurs in the visible part of the spectrum

and the spectrum falls away either side to the X-ray and radio wave regions.

However, such a graph does not present the full picture. A better way to present

the information is as follows.

The power F received per unit area of a telescope, over a wavelength range of

width δλ is given by

F = Fλ δλ (3.4)

Suppose we wish to compare the value of F at X-ray wavelengths with the value

of F at radio wavelengths, keeping δλ fixed. In this case δλ would be a far smaller

fraction of the radio wavelength range than of the X-ray wavelength range, and

therefore a plot of F versus λ would under-represent the radio range. We can

compensate for this by multiplying δλ by λ, to boost the longer wavelength

ranges. Thus in place of Equation 3.4, we have

λF = Fλ(λ δλ) = λFλ × δλ (3.5)

The product lambda eff lambda, λFλ, is thus a useful quantity when we are

comparing widely separated parts of a broad spectrum. Such a spectrum of a

normal spiral galaxy is shown in Figure 3.8b, and is referred to as a spectral

energy distribution. Now, the highest points of λFλ will indicate the wavelength

regions of maximum power received from the source. You will also see broadband

spectra plotted as νFν and referred to as nu eff nu spectra, which is simply the

frequency equivalent of the above representation. From the way the quantities are

defined, it is always the case that

λFλ = νFν (3.6)

and graphs of both are referred to as spectral energy distributions.
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Figure 3.8 The schematic broadband spectrum of a normal spiral galaxy. (a) In

terms of an Fλ versus λ plot, and (b) in terms of a λFλ versus λ plot, i.e. a

spectral energy distribution.

The broadband spectra of normal galaxies peak in the optical (Figure 3.8b); and

the broadband spectra of active galaxies generally reach a maximum in the X-ray

or ultraviolet (Figure 3.9), but occasionally in other parts of the spectrum. The

term spectral excess is used to refer loosely to the prominence of certain other

wavelength regions in the broadband spectra of active galaxies.
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Figure 3.9 The spectral

energy distribution of an active

galaxy, the quasar 3C 273.

Conversions between the various ways of expressing Fλ and Fν are not difficult,

they are just rather tedious as the example below demonstrates!

Worked Example 3.3

If the spectral flux density of a galaxy is Fλ = 10−14 erg s−1 cm−2 Å−1 at a
Essential skill:

Converting between different

measures of flux density

wavelength of λ = 4500 Å, what is its spectral flux density Fν in units of

mJy (millijansky)?

Solution

The key thing here is to keep track of units throughout the calculation.

The relationship between wavelength and frequency for electromagnetic

radiation is c = λν, so in this case, the frequency is

ν = c/λ = (3.00 × 108 m s−1)/(4500 × 10−10 m) = 6.67 × 1014 Hz

Now, using Equation 3.6,

Fν = λFλ/ν = (4500 Å)× (10−14 erg s−1 cm−2 Å
−1

)/(6.67 × 1014 Hz)

so Fν = 6.75× 10−26 erg s−1 cm−2 Hz−1

Now, to convert this into jansky, we need the spectral flux density in the

units of W m−2 Hz−1. First, since 1 erg s−1 = 10−7 J s−1 = 10−7 W, the

spectral flux density may be written

Fν = 6.75× 10−26 × 10−7 W cm−2 Hz−1 = 6.75× 10−33 W cm−2 Hz−1

and since 1 cm−2 = 104 m−2, the spectral flux density may also be written

Fν = 6.75 × 10−33 × 104 W m−2 Hz−1 = 6.75× 10−29 W m−2 Hz−1

Finally, since 1 W m−2 Hz−1 = 1026 Jy, the answer is

Fν = 6.75 × 10−29 × 1026 Jy = 6.75 × 10−3 Jy = 6.75 mJy
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3.4.2 Types of active galaxy

It is clear that all active galaxies have a compact energetic nucleus – an AGN

(Active Galactic Nucleus) – and that the broadband spectrum of an active galaxy

gives one indication of the underlying energetic processes which power the

emission and which set such galaxies apart from those without an active nucleus.

However, further clues to the nature of active galaxies are obtained from resolved

images, particularly images obtained in the radio waveband. It is here that

extended structures including jets and lobes may be seen, emanating from the

galaxy core. Amongst the various subclasses of active galaxy are:

• Seyfert galaxies are spiral galaxies with bright, point-like nuclei which vary in

brightness, although in general they are relatively low luminosity AGN. They

show excesses at far-infrared and other wavelengths, and have strong emission

lines. The spectra of Seyfert 1 galaxies show narrow emission lines (widths of

a few hundred km s−1) as well as broad lines (widths of a few thousand

km s−1); whereas the spectra of Seyfert 2 galaxies contain only the narrow

emission lines.

• Quasars are the most luminous AGN, and are very variable in brightness.

About 10% of quasars are strong radio sources, thought to be powered by jets

of material moving at speeds close to the speed of light.

• Radio galaxies are distinguished by having giant radio lobes fed by one or two

jets. They are usually identified with giant elliptical galaxies or with quasars

• Blazars exhibit a continuous spectrum across a wide range of wavelengths and

emission lines, when present, are broad and weak. They are variable on very

rapid timescales.

The central engine of a typical active galaxy is believed to contain a supermassive

black hole of mass ∼ 108 M⊙ contained within a region that is less than 2 AU

(∼ 3× 1011 m) in radius. The small size is in part deduced from the fact that an

object which fluctuates in brightness on a timescale ∆t can have a radius no

greater than

Rmax ∼ c∆t (3.7)

Infalling material forms an accretion disc around the black hole converting

gravitational energy into thermal energy and radiation. Jets are emitted, in some

systems, perpendicular to the accretion disc. A typical AGN luminosity of 1038 W

can be produced by an accretion rate of around 0.2 M⊙ per year. The maximum

luminosity of an accreting black hole is given by the Eddington limit, at which the

gravitational force on the infalling material is balanced by the radiation pressure

of the emitted radiation.

Exercise 3.1 The AGN shown in Figure 3.10 is seen to double its X-ray

brightness during the observation shown here. What is the maximum size of the

region that could produce this radiation?

n
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Figure 3.10 An example of

X-ray variability shown by the

Seyfert galaxy MCG-6-30-15

during an observation made by

the Chandra X-ray observatory.

The fastest fluctuations are

spurious noise, but the

variability over a few thousand

seconds is a property of the

AGN. (Lee et al. 2002)

(a) (b) (c)

jet

gas and
dust
torus

broad-line
region

narrow-line
region

host galaxy

supermassive
black hole

accretion
disc

jet

radio lobe
jet

Figure 3.11 A generic model for an active galaxy. (a) A supermassive black

hole is surrounded by an accretion disc; jets emerge perpendicular to it. (b) An

obscuring torus of gas and dust encloses the broad line region (a few light-days

across) with the narrow line region (a few hundreds of parsecs across) lying

further out. (c) The entire AGN appears as a bright nucleus in an otherwise normal

galaxy, whilst jets (hundreds of kiloparsec in length) terminate in radio lobes.
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The standard model of an AGN (Figure 3.11) consists of a supermassive black

hole (the engine) accreting from a hot accretion disc. The disc is the source of the

ultraviolet and X-ray emission from the AGN. Surrounding this is a broad-line

region, contained within a torus of infrared emitting dust, and a narrow-line region

lies further out. The broad-line region contains clouds that are moving with

speeds of thousands of km s−1, so giving rise to broad emission lines as a result of

Doppler broadening. The larger narrow-line region contains clouds that are

moving with speeds of a few hundred km s−1 and so gives rise to narrower

emission lines.

(a)  radio-quiet AGNs

rotation axis

narrow-line
region

observer sees
type 2 Seyfert
(type 2 quasar?)

observer sees
type 1 Seyfert
or quasar (QSO)

obscuring
torus

broad-line
region

(b)  radio-loud AGNs

observer sees narrow-line
radio galaxy

observer sees
a quasar

observer sees broad-line
radio galaxy

observer sees
a blazar

engine

jet

Figure 3.12 Two possible

unified models for AGN.

Note that these diagrams are

rotated by 90◦ with respect to

Figure 3.11 – the plane of

the torus is vertical here and

the jets emerge horizontally.

(a) Radio-quiet AGN. (b)

Radio-loud AGN.

Unified models of AGN (Figure 3.12) attempt to explain the range of AGN on the

assumption that they differ only in luminosity and the angle at which they are

viewed. Amongst the radio-quiet AGN, type 1 Seyfert galaxies and type 2 Seyfert

galaxies differ only in the angle at which they are viewed. Radio-quiet quasars

(QSOs) are similar to Seyferts but much more powerful.
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The radio-loud AGN are those which produce radio jets. The idea here is that the

observer sees a radio galaxy, a quasar, or a blazar as the viewing angle moves

from side-on to the jets to end-on to the jets. The difference between radio-loud

and radio-quiet AGN may lie in how fast their black holes are spinning. The

faster-spinning ones may have arisen from mergers of black holes resulting from

the collision of their host galaxies.

It is also important to realise that quasars evolve with time. There are very

few to be found in the nearby Universe, but many to be seen in the distant

Universe where we are effectively looking back in time as we look further away.

Consequently, it is clear that quasars were much more common in the past (i.e.

when the Universe was young) than they are today. Despite this, it is apparent that

dormant black holes reside in the centres of most massive galaxies (including our

own Milky Way and the Andromeda galaxy). It has therefore been suggested that

quasar activity might trace an early stage in the evolution of all galaxies.

3.5 The spatial distribution of galaxies

Galaxies are gravitationally clustered into groups (containing up to about 50

galaxies) and clusters (which contain from about 50 to over 1000 galaxies). Our

Galaxy belongs to the Local Group of galaxies consisting of about 30 members,

but dominated by the Milky Way and Andromeda galaxy (M31), see Figure 3.13.
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Figure 3.13 The main

members of the Local Group of

galaxies; the Milky Way is

located at the centre.
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Medium-scale three-dimensional surveys confirm the existence of superclusters

− loose collections of clusters which are about 30− 50 Mpc in extent. Our Local

Group is at the outer edge of the Local Supercluster which is centred on, and

dominated by, the Virgo cluster.

On the very largest scales (hundreds of megaparsecs), galaxy redshift surveys can

be used to reveal the three-dimensional large scale structure of the visible

Universe. Recent surveys show that superclusters are not themselves organised

into ever larger clusters of superclusters. Instead they are distributed in a vast

network consisting of high-density regions connected by filaments and sheets

wrapped around (relatively) empty voids.

Most clusters of galaxies have a radius of about 2 Mpc (known as the Abell

radius, RA) and the mass of a typical cluster is of the order of 1014 to 1015 M⊙.

Cluster masses can be estimated by three main methods − velocity dispersion,

X-ray emission and gravitational lensing:

• A cluster is said to be virialized if it is a gravitationally bound system and is in

dynamical equilibrium. The mass of such a cluster can be obtained from the

dispersion of the line of sight velocities (∆v) using

M ≈ RA(∆v)
2/G (3.8)

• Rich clusters are strong X-ray emitters due to the presence of hot intracluster

gas. X-ray observations can be used to estimate the total mass of the cluster

and the mass of X-ray emitting gas.

• A cluster can act as a gravitational lens of a distant galaxy, producing distorted

multiple images. This is a means of detecting distant objects and can also be

used to estimate the mass of the intervening cluster. The effect is illustrated in

Figure 3.14.

Figure 3.14 Lensing by

CL0024+1624. Several distorted

images of a distant blue galaxy

can be seen encircling the

yellower galaxies within the

cluster. (W.N. Colley and E.

Turner (Princeton University),

J.A. Tyson (AT & T Bell Labs,

Lucent Technologies) and

NASA)

The masses obtained by the three methods mentioned above typically agree

within a factor of two or three, but the mass estimates indicate that there is far
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more matter in clusters than can be accounted for by the mass of material which is

observed to be emitting electromagnetic radiation. This suggests the presence

of dark matter. Within clusters, there are indications that the dark matter is

distributed more smoothly than the matter that is present in the form of galaxies.

X-ray spectra from clusters show that the hot intracluster medium contains an

unexpectedly high metal content. This enrichment of the ICM is the result of

supernova explosions in energetic young star-forming galaxies. Temperature

maps of clusters indicate that many clusters are not in a state of hydrostatic

equilibrium. This can give us information about the formation of clusters, and

suggests that clusters may grow from the merging of smaller subclusters.

Some quasar spectra contain multiple absorption lines indicating the presence of

gas (mainly neutral hydrogen) at different distances along the line of sight. This is

called the Lyman α forest and can be used to detect the presence of neutral gas in

the intergalactic medium, as illustrated in Figure 3.15. Although the effect is most

often studied in terms of the Lyα line, similar structures are also seen from heavier

elements, such as magnesium and carbon, in galaxies along the line of sight.
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Figure 3.15 Intervening

clouds in the line of sight from a

quasar. As seen from Earth, the

Lyman α emission line from the

distant quasar is redshifted into

the infrared part of the spectrum.

The intervening clouds each

have a somewhat smaller

redshift and therefore result in a

series of Lyman α absorption

lines, with the same set of

smaller redshifts.

3.6 The structure of the Universe

Clearly, the Universe contains matter in the form of planets, stars and galaxies, not

to mention various clouds of gas and dust. However, this (largely) luminous

matter comprises only a tiny fraction of the matter content of the Universe. The

vast majority of the matter content of the Universe is in the form of dark matter.

This dark matter is probably comprised of a relatively small amount of baryonic

dark matter (consisting mainly of hydrogen and helium) and a dominant

contribution from non-baryonic dark matter (i.e. not composed of the familiar

protons, neutrons and electrons). The nature of dark matter is presently unknown.

The Universe also contains electromagnetic radiation. Much of it is visible

light, but the major part of the energy is contained in the cosmic microwave

background (CMB) radiation.

The Universe is observed to be very uniform. That is to say, all regions that are

sufficiently large to be representative have the same average density and pressure,

115



Chapter 3 Galaxies and the Universe

wherever they are located. This claim is consistent with the observed distributions

of matter and radiation.

As noted earlier, distant galaxies all exhibit redshifts, which increase with distance

away from the Earth. The interpretation of this is that the Universe is expanding

and this is described by the Hubble law, z = (H0/c)d, where the Hubble constant

H0 provides a measure of the rate of cosmic expansion at the present time.

According to Einstein’s theory of general relativity the geometric properties of

spacetime are related to the distribution of energy and momentum within that

spacetime. The precise relationship is described by the field equations of general

relativity, which provide the basis for Einstein’s theory of gravity and for

relativistic cosmology. The geometric properties of spacetime include curvature,

which can be quantified by a parameter k, as illustrated in Figure 3.16. In a

curved space, geometric results can take on unfamiliar forms. The interior angles

of a triangle may have a sum that is different from 180◦ and pairs of straight lines

that are initially parallel may converge or diverge. The value of k determines

whether space is finite (k = +1) or infinite (k = 0 or −1).
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Figure 3.16 The effect of the curvature parameter k in determining the

large-scale geometry of a cosmological model.

The geometric properties of any particular spacetime can be summarized by

writing down an appropriate four-dimensional generalization of Pythagoras’s

theorem. In the case of a static (i.e. non-expanding), flat (i.e. zero curvature)

spacetime, this takes the form

(ds)2 = (dx)2 + (dy)2 + (dz)2 − c2(dt)2 (3.9)

The distribution of energy and momentum throughout spacetime is believed

to be uniform on the large scale. This assertion is given precise form by the

cosmological principle according to which, on sufficiently large size scales, the
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3.6 The structure of the Universe

Universe is homogeneous and isotropic. Simple cosmological models that are

consistent with this principle assume that a gas uniformly fills the Universe.

Describing the state of this gas involves specifying its density and pressure, ρ(t)
and p(t), both of which are expected to change with time due to the expansion or

contraction of the Universe.

In applying general relativity to cosmology, Einstein introduced a cosmological

constant Λ. Thanks to this he was able to formulate a relativistic cosmological

model that is neither expanding nor contracting, and in which space has a uniform

positive curvature. Later, the work of Friedmann, Robertson and Walker resulted

in the specification of the class of cosmological models that are consistent with

general relativity and with the cosmological principle. These models involve a

curvature parameter k that characterizes the geometry of space, and a scale factor

R(t) that describes the expansion or contraction of space. The Friedmann

equation which describes the way the scale factor varies with time may be written

Ṙ2(t) =
8πGR2(t)

3

(
ρ(t) +

Λc2

8πG

)
− kc2 (3.10)

The full range of FRW models, obtained by solving this equation, includes cases

that are closed, critical, open and accelerating. Some examples of FRW models

are shown in Figure 3.17.

t

R

t

R

t

R

t

R

Einstein
closed

bouncing

critical

open

t

R

t

R

t

R

t

R

Einstein
de Sitter

accelerating

t

R

t

R

t

R

increasing Λ

k = +1

k = 0

k = −1

Lemaitre

Λ = ΛE0 < Λ < ΛE
Λ = 0Λ < 0 Λ > ΛE

Eddington
Lemaitre

Figure 3.17 The Friedmann–Robertson–Walker models, classified according

to the values of Λ and k. In each case the model is represented by a small

graph of R against t, which encapsulates the history of spatial expansion and/or

contraction implied by the model. ΛE represents the value of the cosmological

constant in the Einstein model.
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Models which allow the scale factor to be zero at some time in the past are

consistent with the idea that the Universe began with a big bang, in which

spacetime was created. Models which predict a scale factor of zero at some

time in the future imply that the Universe will end with a big crunch. The

critical universe has k = 0 and Λ = 0; it is sometimes known as the Einstein-de

Sitter model, and corresponds to a universe which is spatially flat, and has no

cosmological constant. Such a universe expands forever, but the expansion always

decelerates. Amongst the other models with Λ = 0, that with a positive curvature

is known as a closed universe model and that with a negative curvature is known

as an open universe model.

Exercise 3.2 In the context of the FRW models shown in Figure 3.17, which

values or ranges of the parameters k and Λ correspond to universes with the

following characteristics?

(a) The universe is neither homogeneous nor isotropic.

(b) There is no possibility of a big bang.

(c) A big bang is possible, but there is at least one other possibility.

(d) The particular point in space where the big bang happened can still be

determined long after the event.

(e) At any time, the large-scale geometrical properties of space are identical to

those of a three-dimensional space with a flat geometry.

(f) Space has a finite volume, and straight lines that are initially parallel may

eventually meet.

(g) There is a big bang, but the volume of space is infinite from the earliest times.

n

The FRW models provide a natural interpretation of the redshifts of distant

galaxies as cosmological redshifts caused by the stretching of light waves while

they move through an expanding space. This allows us to rewrite the expression

for redshift (Equation 3.1) as follows. From

z =
∆λ

λ
=
λobs − λem

λem
we have

z =
λobs
λem

− 1

The ratio of the two wavelengths must be equal to the ratio of the two scale factors

corresponding to the time when the light is observed and the time when it is

emitted, hence

z =
R(tobs)

R(tem)
− 1 (3.11)

The Hubble parameter H(t) provides a measure of the rate of expansion of space

in any FRW model. It is defined by

H(t) = Ṙ/R (3.12)

where Ṙ denotes the rate of change of R with time. Observations of distant
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galaxies are predicted to show that, to a first approximation, d = cz/H0, where

H0 represents the value of the Hubble parameter at the time of observation.

The deceleration parameter q(t) provides a measure of the rate of decrease of the

rate of cosmic expansion in an FRW model. It is defined by

q(t) = −RR̈/Ṙ2 (3.13)

where R̈ denotes the rate of change of Ṙ with time. Observations of very distant

galaxies are predicted to show systematic deviations from the Hubble law

described by

d =
cz

H0

[
1 +

(1− q0) z

2

]
(3.14)

where q0 represents the value of the deceleration parameter at the time of

observation. A negative deceleration parameter indicates an epoch of cosmic

acceleration.

The density parameters, Ωm and ΩΛ, provide a useful means of representing the

cosmic matter density and the density associated with the cosmological constant

at any time. The parameters are defined by

Ωm = ρ/ρcrit (3.15)

and

ΩΛ = ρΛ/ρcrit (3.16)

respectively, where ρ is the cosmic matter density at the time of observation, the

quantity

ρΛ =
Λc2

8πG
(3.17)

is a ‘density’ associated with the cosmological constant, and the quantity

ρcrit =
3H2(t)

8πG
(3.18)

is the density that the critical universe would have at the time of observation. The

quantity ρΛc
2 can be thought of as the density of dark energy: possibly a ‘vacuum

energy’ associated with empty space. In a universe with a flat space (i.e. k = 0),

the Friedmann equation implies that

Ωm +ΩΛ = 1 (3.19)

at all times. Various possible behaviours for the Universe depending on the values

of Ωm and ΩΛ are shown in Figure 3.18.

The age of the Universe t0 may be conveniently expressed in terms of the Hubble

time 1/H0 in any FRW model. In the case of the critical model, t0 = 2/3H0. In

other models t0 may be a different fraction of the Hubble time, depending on the

values of Ωm and ΩΛ. Increasing the value of ΩΛ increases the age of the universe

for a given value of the Hubble constant.
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Figure 3.18 A plot of ΩΛ,0 (the density associated with the cosmological

constant today) versus Ωm,0 (the cosmic matter density today). The values of

these two quantities determine important characteristics of an FRW cosmological

model, such as the sign of the curvature parameter k, whether the Universe will

expand forever or eventually collapse, whether the expansion will accelerate or

decelerate, and whether or not there was a big bang.

3.7 The evolution of the Universe

The Universe began with a hot big bang, at which instant spacetime was created.

The relic of this event is the cosmic background radiation which pervades the

entire Universe. It is observed to have a near perfect black-body spectrum and its

current temperature is about 2.73 K (see Figure 3.19). In fact, the temperature T
varies with the scale factor R(t) according to

T ∝ 1/R(t) (3.20)

At times when the scale factor of the Universe was much smaller than at present,

the temperature of the cosmic background radiation would therefore have been

much higher.
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Figure 3.19 The spectrum

of the cosmic microwave

background. The peak of the

spectrum, at a wavelength of

around 1 mm, corresponds to a

black-body temperature of about

3 K.

At early times the dominant contribution to the energy density of the Universe

was that due to radiation. At such times, the temperature is related to time by

T/K ≈ 1.5× 1010 × (t/s)−1/2 (3.21)

Later on in the evolution of the Universe, the dominant contribution to the energy

density was provided by matter. Still more recently, at the present time the

dominant energy density is believed to be due to dark energy, as illustrated in

Figure 3.20.

scale factor R(t) /R(t0)

1

en
er

g
y
 d

en
si

ty
/J

 m

radiation-dominated era

10 −14

10 −10

10 −6

10 −2

10 2

10 6

10 10

10 −6 10 −5 10 −3 10 −2 10 −1410 −

3

matter

radiation

cosmological constant

Figure 3.20 The energy

densities of matter (blue line)

and radiation (red line) as a

function of scale factor. At a

time when R(t)/R(t0) ≈ 10−4

the energy densities of matter

and radiation were equal. Prior

to this time, the energy density

of radiation exceeded that of

matter – during this era the

dynamical evolution of the

Universe was determined by its

radiation content. After this

time, the energy density of

matter was greater, so it was

the matter in the Universe

that controlled its dynamical

evolution. The behaviour of the

energy density due to the

cosmological constant is also

shown (purple line) – this does

not vary with redshift and is

exceeded by the energy densities

of matter and radiation at early

times.

Current physical theory breaks down in describing events that took place at,

or before, the Planck time (t ∼ 10−43 s after the big bang). It is speculated

that major physical effects could have arisen when grand unification ended

(at t ∼ 10−36 s after the big bang). At this time, the strong and electroweak
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Chapter 3 Galaxies and the Universe

interactions became distinct. One such effect may be the process of inflation,

which resulted in the scale factor increasing very rapidly for a short period of time.

At early times, the content of the Universe would have been all types of quark and

lepton and their antiparticles. There were also particles present that mediate the

fundamental interactions (such as the photon), as well as dark-matter particles.

There was also a slight excess of matter over antimatter, although the cause for

this imbalance is not currently known. At t ∼ 10−5s after the big bang, free

quarks became bound into hadrons. Most of these hadrons either decayed or

annihilated with their antiparticles, leaving only protons and neutrons. For every

1010 or so annihilation events that occurred, there would have been one proton or

neutron left over.

At t ∼ 0.7 s after the big bang, neutrinos had their last significant interaction with

other particles (apart from the effects of gravity). Shortly after this, when the

Universe was about 10 s old, electron–positron pairs annihilated, leaving only a

residual number of electrons whose summed electric charges exactly balance the

charge on the protons.

In the first few hundred seconds of the history of the Universe, the physical

conditions were such that nuclear fusion reactions could occur. Such reactions

led to the formation of deuterium, helium and lithium. The first step in the

production of helium is the formation of deuterium. This nuclide is unstable to

photodisintegration at temperatures above 109 K. The formation of helium did not

start until t ≈ 225 s. During this time, some neutrons decayed to protons,

and this had an effect on the mass fraction of helium that was produced by

primordial nucleosynthesis. The mass fraction of helium that is predicted

by primordial nucleosynthesis is about 24%. This is in good agreement with

measurements of the helium abundance in interstellar gas and stars, and provides

very strong evidence to support the hot big bang model. (NB. Although stars

process hydrogen into helium and expel this into the interstellar medium via

planetary nebulae and supernovae, there is far more helium in the Universe than

can be produced by this route.)

The cosmic microwave background that is observed at the present time appears to

originate from a particular last-scattering surface. The scattering of background

radiation photons stopped when the number density of free electrons became very

low, and this occurred because of the recombination of electrons and nuclei

to form neutral atoms. The age of the Universe at this point was about

t = 300, 000 years after the big bang and the temperature of the Universe when

this occurred was around 3000 K.

Exercise 3.3 Calculate the redshift at which the last scattering occurred. (Hint:

Start by using Equation 3.20 and Equation 3.11 to determine the change in scale

factor.)

Exercise 3.4 Suppose we received a message from (hypothetical) astronomers

in a galaxy that has a current redshift of z = 2.5. What would they say they found

as the temperature of the cosmic microwave background at the time of their

transmission?

n

The observed high degree of uniformity of the cosmic microwave background

leads to the horizon problem – which is that regions of the last-scattering surface
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3.8 Observational cosmology

that are more than about 2◦ apart could not have come into thermal equilibrium by

the time that last scattering occurred. The cosmic microwave background shows

intrinsic anisotropies in temperature at a level of a few parts in 105. These

anisotropies result from density variations in the early Universe.

The formation of structure in the Universe would have proceeded by gravitational

collapse from density fluctuations in the early Universe. Prior to recombination,

the high degree of scattering between photons and electrons prevented density

fluctuations in baryonic matter from growing substantially. If all matter was

baryonic in form, then the level of fluctuation that is observed on the last

scattering surface is too small to explain the structure that we observe at the

present time. The observed level of structure in the present-day Universe can be

explained, however, if density fluctuations in non-baryonic matter had begun to

grow prior to recombination, and baryons were subsequently drawn into those

collapsing clouds of dark matter.

3.8 Observational cosmology

So far, we have mostly described the Universe from the viewpoint of theory about

its structure and evolution. In this section we present some information about the

Universe from the viewpoint of observations or measurement.

As you know, the Hubble constant H0 measures the current rate of expansion of

the Universe. H0 is traditionally determined by means of the Hubble diagram:

a plot of redshift against distance for distant galaxies. When making such a

plot, the redshift and the distance must be determined independently and the

Hubble constant is obtained from the gradient of the plotted line. The HST Key

Project team used Cepheid variables to calibrate five other methods of distance

measurement. Using these, together with independent measurements of galaxy

redshifts, they concluded that H0 = (72 ± 8) km s−1 Mpc−1. Other methods of

determining H0 include those based on gravitational lensing (via time delays

between fluctuations in different images of the same lensed galaxy) and those

based on observations of anisotropies in the cosmic microwave background

radiation (CMB).
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Figure 3.21 Results of the

Supernova Cosmology Project,
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current values of ΩΛ and Ωm.

The results effectively rule out

the kind of Universe in which

ΩΛ,0 = 0 and Ωm,0 = 1 that was

favoured by many cosmologists

prior to the publication of the

supernova data. (Adapted from

Schwarzschild, 1998, based on

the work of S. Perlmutter et al.)

The deceleration parameter q0 measures the current rate of change of cosmic

expansion. q0 may be determined from the Hubble diagram by observing the

curvature of the plotted line at z > 0.2, but early attempts to do this were highly

inconsistent. Results obtained using Type Ia supernovae as distance indicators

suggest that q0 is negative, implying that the expansion of the Universe is

accelerating. It has become traditional to express the value of q0 in terms of Ωm,0

and ΩΛ,0, using the relation

q0 =
Ωm,0

2
− ΩΛ,0 (3.22)

As noted earlier, the current values of the density parameters, ΩΛ,0, Ωm,0 and

Ωb,0, measure the densities associated with the cosmological constant (dark

energy), matter of all kinds, and baryonic matter, relative to the critical density

ρcrit =
3H2

0

8πG
(Eqn 3.18)
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Results based on observations of anisotropies in the CMB strongly favour

ΩΛ,0 + Ωm,0 = 1 and k = 0. When these are combined with the results of

observations of Type Ia supernovae, favoured values of ΩΛ,0 and Ωm,0 are

typically ΩΛ,0 ≈ 0.7 and Ωm,0 ≈ 0.3, as illustrated in Figure 3.21.

The current value of the density constant for baryonic matter can be

determined in a number of ways. This quantity is constrained by primordial

nucleosynthesis calculations which, if they are to agree with observations,

require 0.02 < Ωb,0 < 0.05. Direct assessments of Ωb,0 based on baryon

inventories, are beset by many uncertainties, but generally favour lower values:

0.007 < Ωb,0 < 0.041.

Although highly isotropic, the CMB exhibits anisotropies in intensity at the level

of a few parts in 100 000 over a range of angular scales. These can be mapped,

and are usually shown as variations in the temperature of the CMB, as shown in

Figure 3.22. The angular power spectrum of an anisotropy map shows the

level of variation that is present on any specified angular scale, as shown in

Figure 3.23. Here the angular power is shown as a function of the multipole

number l, where l = 180◦/θ and θ represents the angle between two particular

directions on the sky. Values of cosmological parameters may be extracted from

anisotropy measurements by comparing the observed angular power spectrum

with that predicted by big bang cosmology. Recent results from the WMAP

(Wilkinson Microwave Anisotropy Probe) satellite indicate ΩΛ,0 = 0.73 ± 0.02,

Ωm,0 = 0.27 ± 0.02 and Ωb,0 = 0.044 ± 0.002, implying a Universe dominated

by dark energy, and in which most of the matter is non-baryonic dark matter.

+200−200 T/µK

Figure 3.22 An all-sky CMB anisotropy map, based on data obtained by the

WMAP space probe. The angular resolution of this map is about 0.1◦. (Bennett et

al., 2003)

WMAP measurements also indicate that H0 = (70.4 ± 1.5) km s−1 Mpc−1, and

that the age of the Universe is t0 = (13.73 ± 0.15) × 109 years. The results

may indicate that we are now entering an era of precision cosmology in which

cosmological speculations will be tightly constrained by measurements, and

quantities that were previously very uncertain will become accurately known.

Exercise 3.5 (a) Using the most accurate values for ΩΛ,0 and Ωm,0,

what is the best estimate for the current value of the deceleration parameter

q0? (b) Using the most accurate value for the Hubble constant, what is
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the best estimate for the current value of the critical density? (Use 1 Mpc

= 3.09 × 1019 km; G = 6.67 × 10−11 N m2 kg−2.)
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Figure 3.23 The angular power spectrum of the CMB as determined by

WMAP. (Bennett et al., 2003)

3.9 Cosmological questions

The models devised by cosmologists are simplified representations of the

Universe. Like all models, they are only partial analogies to reality and break

down outside their limits of validity. The big bang model is successful as far as it

goes, but there are several problems it cannot answer.

Problem 1: What is the dark matter? Dark matter makes up about 23% of the energy

density of the Universe. A little of it is baryonic, in the form of MACHOs

(Massive Compact Halo Objects), which are simply familiar objects that are

too faint to see. Some of them can be revealed by gravitational microlensing.

About 85% of the dark matter has to be nonbaryonic but apart from a very

small proportion of neutrinos, its nature is largely unknown. The best candidate

is the neutralino, a form of WIMP (Weakly Interacting Massive Particle),

which may soon be discovered in laboratory experiments.

Problem 2: What is the dark energy? Dark energy is a source of negative pressure that fills

the Universe and drives the accelerating expansion. It should not be confused

with dark matter. Its nature is still a mystery, but the leading contenders are

Einstein’s cosmological constant (a source of ‘repulsive’ gravity arising from

general relativity), quantum vacuum energy (a consequence of Heisenberg’s

uncertainty principle) or ‘quintessence’ (an exotic form of matter).

Problem 3: Why is the Universe so uniform? This is the horizon problem, which asks why

widely separated regions have the same temperature and density, even though
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each has been beyond the horizon of the other throughout the history of the

Universe. Inflation provides a possible answer. A small region of the Universe

that had become homogeneous might have expanded so rapidly and by such an

enormous factor that the whole of the currently observable part of the Universe

(and perhaps more) is contained within the inflated homogeneous region.

Problem 4: Why does the Universe have a flat (k = 0) geometry? Again, inflation may

make it so. During the inflationary period large amounts of matter and energy

were released into the Universe from the vacuum energy, leaving its density

very close to the critical density, which corresponds to a flat geometry.

Equivalently, whatever curvature the early Universe may have had would have

been smoothed out by inflation leaving the spatial geometry of the observable

Universe indistinguishable from that of a ‘flat’ space.

Problem 5: Where did the structure come from? Clusters of galaxies were formed from

density fluctuations in the early Universe which have left their imprint on the

cosmic background radiation. Those fluctuations in turn may have arisen from

tiny quantum fluctuations which were stretched by inflation from the

microscopic scale up to and beyond the size of the then-observable Universe.

At that point they would have become ‘frozen in’ as large-scale primordial

fluctuations from which galaxies could condense.

Problem 6: Why is there more matter than antimatter? Although one might expect equal

numbers of particles and antiparticles to have been created in the early

Universe, grand unified theories of physics allow a slight imbalance of matter

over antimatter of 1 part in 1010. The matter now in the Universe is that left

over when the bulk of the matter and antimatter annihilated.

Problem 7: What happened at t = 0? Its still anyone’s guess. General relativity breaks

down at the Planck time of 10−43 s, and to progress to earlier times requires a

theory of quantum gravity that unifies general relativity with quantum physics.

Inflation, too, remains without a firm grounding until this very early era is

better understood. Limited progress has been made with quantum cosmology

but the new all-encompassing M-theory offers several intriguing lines of

enquiry.

Summary of Chapter 3

1. The Milky Way is a typical spiral galaxy comprising a disc, a halo and a

nuclear bulge. Young, high metallicity, population I stars are found mainly

in the spiral arms whilst older, low metallicity, population II stars are found

in the halo (including globular clusters) and the nuclear bulge. HII regions

(ionized hydrogen) and open stars clusters are found in spiral arms and are

associated with star formation.

2. Other galaxies are classified according to their shape as elliptical, lenticular,

spiral or irregular. The most abundant galaxies are dwarf galaxies.

3. Galaxy masses are determined by various techniques, including the study of

rotation curves (for spirals) and velocity dispersion (for ellipticals).

Distances to other galaxies are determined by a range of techniques,

including the use of standard candles such as Cepheid variable stars.
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4. For nearby galaxies, the Hubble law relates the redshift of a galaxy to its

distance via

z =
∆λ

λ
=
H0d

c
The Hubble law is due to the overall expansion of the Universe and implies

that the further away a galaxy is the faster it is receding from us; H0 is about

70 km s−1 Mpc−1. For relatively low speeds (v < 0.1c) the relationship

z = v/c holds true and therefore v = H0d.

5. A generic model for an active galaxy supposes that the central engine is a

supermassive black hole surrounded by an accretion disc with jets emerging

perpendicular to the accretion disc. The engine is surrounded by an

obscuring torus of gas and dust. The broad line region occupies the hole in

the middle of the torus and the narrow line region lies further out. The entire

AGN appears as a bright nucleus in an otherwise normal galaxy.

6. Unified models of AGN attempt to explain the range of AGN on the

assumption that they differ only in luminosity and the angle at which they

are viewed.

7. A convenient way of comparing the energy output of an astronomical object

over a broad range of wavelength (or frequency) is to plot the spectrum as a

graph of λFλ versus λ (or νFν versus ν). The spectral flux density Fλ (or

Fν) is defined as the power per unit area per unit wavelength range (or per

unit frequency range) received from an astronomical object.

8. Galaxies are gravitationally clustered into groups and clusters. The mass of

clusters of galaxies indicate that there is far more matter in clusters than the

sum of the individual galaxy masses. This suggests the presence of dark

matter in clusters.

9. The behaviour of spacetime in terms of the scale factor R(t) may be

described by the Friedmann equation, which depends on the values of the

curvature parameter k, the cosmological constant Λ and the density of the

Universe ρ at some particular time:

Ṙ2(t) =
8πGR2(t)

3

(
ρ(t) +

Λc2

8πG

)
− kc2

The Friedmann–Robertson–Walker models are a set of cosmological models

that are consistent with general relativity and the cosmological principle.

They allow a variety of cases that are closed, critical, open, decelerating or

accelerating.

10. The Hubble parameter is defined in terms of the scale parameter as

H(t) =
Ṙ

R
and the deceleration parameter is defined as

q(t) =
−RR̈
Ṙ2

The critical density of the Universe (corresponding to a model with Λ = 0
and k = 0) is given by

ρcrit =
3H2(t)

8πG
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11. Recent results from the WMAP space probe and measurements of distant

type Ia supernovae indicate k = 0, ΩΛ,0 = 0.73± 0.02, Ωm,0 = 0.27± 0.02
and Ωb,0 = 0.044 ± 0.002, implying a flat Universe dominated by dark

energy, and in which most of the matter is non-baryonic dark matter. These

measurements also indicate that H0 = (70.4 ± 1.5) km s−1 Mpc−1, and that

the age of the Universe is t0 = (13.73 ± 0.15) × 109 years.

12. The Universe was created at the instant of the big bang. As it has aged, the

Universe has cooled and distances within it have increased. At the earliest

times, the four fundamental interactions were unified, but as the temperature

of the Universe decreased, so these interactions became distinct. The earliest

time about which anything can be said is the Planck time. Early in its

history, the Universe is presumed to have undergone an extremely rapid

period of expansion, known as inflation. One effect of this was to smooth

out any irregularities, leading to today’s remarkably uniform observable

Universe. The early Universe contained almost equal numbers of particles

and antiparticles, however, there was an asymmetry of a few parts in ten

billion in favour of matter. The matter and antimatter underwent mutual

annihilation and the result of this is that there are now about ten billion

photons for every matter particle in the Universe. Equal numbers of protons

and neutrons were initially produced in the Universe, however, free neutrons

decay, and this reduced their number. All free neutrons were soon bound up

within nuclei of deuterium, helium and lithium. The approximate

distribution of mass in the Universe is about 25% helium-4 to 75%

hydrogen, with small traces of other nuclei. Neutrinos ceased to interact

with the rest of the Universe soon after protons and neutrons were formed,

just before electrons and positrons annihilated. At around 300 000 years

after the big bang, when the temperature was about 3000 K, photons

produced from the matter–antimatter annihilations had their last interaction

with the matter of the Universe. These photons, redshifted by a factor of a

thousand by the subsequent expansion of the Universe, form the cosmic

microwave background that is observed today.

13. Despite being in the era of ‘precision cosmology’, there are a number of

unanswered questions. These include: What is the dark matter? What is the

dark energy? Why is the Universe so uniform? Why does the Universe have

a flat geometry? Where did the structure come from? Why is there more

matter than antimatter? What happened at t = 0?
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Introduction

In this second mathematical chapter we discuss one of the most powerful and

useful techniques of mathematics, namely differential and integral calculus.

Because calculus is a key tool in astrophysics and cosmology, there are a lot of

worked examples in this section, many of which draw on astrophysical

phenomena. This is not a mathematics course, so we are not interested in rigorous

proofs of the various mathematical techniques. Rather, you must be comfortable

using these tools and applying the techniques to real astrophysical and

cosmological situations.

If you have not previously studied a Level 2 mathematics course (such as

MST209), you will need to study this section very closely indeed. You must make

sure you can answer all the questions it contains, and are able to reproduce the

steps in each of the examples, before proceeding. If you have previously studied a

Level 2 physics course (such as S207), then some of the basic concepts and

techniques below should already be familiar to you from that material, but you

will still have to pay close attention to the new ones that are introduced here. Do

not be tempted to miss out the exercises in this chapter, it is only by repeated

practice that you will become comfortable with applying and understanding these

ideas and methods which are essential for studying astrophysics and cosmology.

4.1 Differentiation and curved graphs

Differentiation is a means of finding how one quantity changes as a result of

changes in another. Where two quantities y and x are plotted on a graph, the rate

of change of y in response to changes of x is simply the gradient (slope) of the

graph. For quantities following a linear relation, the gradient can be calculated

easily from the data values, as shown in Section 1.10. In this section, we consider

the situation where the graph is curved, and in the next section we consider when

the relationship between x and y is a known equation.

The tangent at a point on a curve is a straight line whose slope matches the tilt of

the curve at that point. The gradient of a curved graph is simply the gradient of

the tangent to the curve at the point of interest. Considering Figure 4.1, the

gradient is very small for small values of x and y, becomes much higher for

intermediate values of x and y, and falls to small values again for large values of x
and y. So, whereas the gradient of a straight-line graph was the same for all values

of x and y, for a curved graph the gradient changes depending on which part of

the curve is considered.

It would be impractical to draw a tangent for every point on a curve to calculate

the gradient, but some simple mathematical tools come to our aid. With reference

to Figure 4.1, the gradient of the tangent at some point P can be approximated by

the gradient of a straight line joining two points on either side of P, shown in the

figure as ∆y/∆x. This approximation is rather coarse if the chosen side points

are too far away from the central point of interest, but it becomes more accurate

the closer the points come to P.
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y

x

tangent

P

∆y

∆x

line with gradient
∆y

∆x
Figure 4.1 The gradient at a

point P on a curved line is equal

to the gradient of the tangent at

that point.

In the limit where the points are so close to P as to be indistinguishable, the

intervals ∆y and ∆x become infinitesimal, and the approximation becomes exact.

The gradient in this limit is written mathematically not as ∆y/∆x but as dy/dx ,

the lowercase ‘d’s signifying the limit of infinitesimal intervals. That is, the

gradient of a graph of y versus x at some point is described as

dy

dx
= lim

∆x→0

∆y

∆x
(4.1)

Thus dy/dx represents the rate of change of y with x, and is known

mathematically as ‘the derivative of y with respect to x’. The value of dy/dx
usually changes from one point to the next, unless y is a linear function of x.

Generally, if y is a function of x, then the derivative dy/dx will also be a function

of x.

l What is the significance of a region of a graph where dy/dx = 0?

m This indicates a particular point on the graph where the gradient is zero, i.e.

the graph is (momentarily) horizontal. The point(s) where dy/dx is zero

therefore include locations where the graph is momentarily at a maximum or

minimum.

When dy/dx (the gradient of a graph of y versus x) changes with x, it is often

useful to ask how rapidly the gradient changes with x. We can determine this by

applying the same process described above, not to y but to dy/dx, to find the

gradient of dy/dx versus x. We would then be finding the derivative of the first

derivative. Such a quantity is referred to as ‘the second derivative of y with

respect to x’, and extending the notation above it is written d2y/dx2. (Of course,

there is no reason to stop with second derivatives, since even this may vary with x,

and it may be useful on rare occasions to calculate third or higher derivatives.)

In some cases it is useful to use shorthand notations for first and second

derivatives, and you should be aware of them because you will encounter them in

astrophysics and cosmology. Sometimes dy/dx and d2y/dx2are denoted by y′

and y′′ (called ‘y-prime’ and ‘y-double-prime’). Although you should note that

primes are often used also for completely different topics having nothing to do

with derivatives; the context of the problem will usually prevent confusion.

Another notation, ẏ and ÿ (called ‘y-dot’ and ‘y-double-dot’) is often used for

derivatives with respect to time, dy/dt and d2y/dt2. This latter notation is

particularly prevalent in astrophysics and cosmology. Note also that any symbol

may be used for functions in this notation, not just y.
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4.2 Differentiation of known functions

l If M is used to represent the mass of a star, what is meant by the notation Ṁ?

m Ṁ (‘em-dot’) implies the rate of change of M with time (dM /dt). (The mass

of a star may increase if it accretes material from a companion or decrease if

it loses mass via a stellar wind or by transfer to a companion.)

4.2 Differentiation of known functions

A most valuable feature of derivatives is that, if we know the analytic or

functional form (the equation) of the relationship between two variables, then

derivatives can be obtained without having to draw graphs (though graphs may

help visualize the relationship). In this document, rather than show the proofs of

differentiation, we tabulate the derivatives of some general functions that are

likely to be encountered in astrophysics and cosmology.

y  = Ax2 + Bx + C

(a)

x

y

(b) (c)

d 2 y

dx 2

d 2 y

dx 2
= 0

d 2 y

dx 2

d 2 y

dx 2
= 2 A

d 2 y

dx 2

y  = mx + c

dy

dx

y  = A cos kx

d 2 y

dx 2
= −Ak 2 coskx

dy

dx

dy

dx

dy

dx
= m = 2 Ax + B = −Ak sin kx

y y

x

x

x

x

x

x

x

x

dy

dx

dy

dx

Figure 4.2 Three functions of x (a straight line, a parabola and a sinusoid) and

their first and second derivatives.
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In the following tabulation, derivatives are given with respect to some variable t.
The symbols ω, a, n and k are constants (that is, independent of t), while u and

v do depend on t, i.e. they are functions of t. Some simple functions (of an

arbitrary variable x) and their first and second derivatives are shown in Figure 4.2.

Convince yourself that you can work out the first and second derivatives using the

results in Table 4.1.

Table 4.1 Some functions

and their derivatives

Function Derivative

f(t) df /dt or f ′ or ḟ
a 0

at a
atn natn−1

a sin(ωt) aω cos(ωt)
a cos(ωt) −aω sin(ωt)
a exp(kt) ak exp(kt)
loge t 1/t
a loge t a/t

In general, when faced with a function to differentiate, the first aim is to reduce

the formula to something which may be differentiated using one of the rules in

Table 4.1. To this end, it is often possible to use either the sum rule and product

rule, namely

d(u+ v)

dt
=

du

dt
+

dv

dt
(4.2)

d(uv)

dt
= u

dv

dt
+ v

du

dt
(4.3)

where u and v are themselves functions of t in this case. Note that the variables u,

v and t are merely used as examples, and the two rules can of course be used for

any combination of variables. A couple of examples drawn from astrophysics

should make the process clear.

Worked Example 4.1

The probability for an atomic nucleus with energy E in the
Essential skill:

Using the sum rule for

differentiation

core of a star to undergo nuclear fusion depends on two terms:

p(E) = −(E/kT ) − (EG/E)1/2, where k, T and EG are constants in this

case. Use the sum rule to evaluate the rate of change of this probability

expression with respect to energy, dp/dE.

Solution

We use the sum rule, with u = (E/kT ) and v = (EG/E)1/2. Using the rule

from line 3 of Table 4.1,

du

dE
=

1

kT

We now note that (EG/E)1/2 can be written E
1/2
G × E−1/2, so using the

rule from line 4 of Table 4.1,

dv

dE
= E

1/2
G ×

(
−1

2
E−3/2

)
= − E

1/2
G

2E3/2

Then applying the sum rule,

d(u+ v)

dt
=

du

dt
+

dv

dt

so
dp

dE
= − 1

kT
−
(
− E

1/2
G

2E3/2

)

or
dp

dE
=

(
EG

4E3

)1/2

− 1

kT
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4.3 The exponential function

Worked Example 4.2

Suppose the pressure at a location inside an interstellar gas cloud varies
Essential skill:

Using the product rule for

differentiation

according to the following equation as a sound wave travels through it:

P (t) = (A/t2)× sin(ωt)

where A and ω are constants. Use the product rule to determine the rate of

change of pressure with respect to time, dP /dt.

Solution

We first write u = At−2 and v = sin(ωt), so that P (t) = uv. Using

the various rules from Table 4.1 we then write du/dt = (−2At−3) and

dv/dt = ω cos(ωt). Then we use the product rule,

d(uv)

dt
= u

dv

dt
+ v

du

dt

which in this case becomes

d(uv)

dt
=
A

t2
ω cos(ωt) + sin(ωt)×

(
−2A

t3

)

and this can be simplified a little to become

dP

dt
=

(
A

t2

)
×
[
ω cos(ωt)−

(
2

t

)
sin(ωt)

]

Exercise 4.1 (a) If F (r) = k/r, what is dF /dr? (b) If G(x) = ax2 sin(bx)
what is dG/dx? (You may assume that k, a and b are constants.)

n

4.3 The exponential function

From Table 4.1, if y = a exp(kt), then dy/dt = ak exp(kt). Note, however, that

ak exp(kt) is just ky. That is,

if y = a exp(kt) then dy/dt = ky (4.4)

In words, if y = a exp(kt), then the derivative of y (the gradient of the graph of y
versus t) is directly proportional to y itself. This is the special property of

the number e that was hinted at in the earlier discussion of natural logarithms

(Section 1.9).

You will often see the exponential function (expx) represented by ‘ex’. So be

aware that

expx ≡ ex (4.5)

A process in which the relevant quantity varies according to the relation

dy/dt = ky is referred to as an exponential process. Although these are

frequently functions of time, as in the examples here, exponential processes are
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also encountered as functions of distance, or some other variable. Examples of

exponential curves are shown in Figure 4.3 for different values of k and Z0. In

each case the two quantities Z and t are related according to the equation

Z(t) = Z0 exp(kt) (4.6)

0 2 4 6 8
0

1

2

3

4

5

t

k  = 0.3

k  = 0.1

k  = − 0.3

6

Z

Z 0 = 5

Z 0 = 1

Figure 4.3 Exponential curves, Z = Z0 exp(kt), for various values of Z0 and

k.

It is a general property of exponential growth curves (i.e. k > 0) that they

approach a value of ∞ as the variable (in this case t) approaches ∞ and they tend

to zero as the variable approaches −∞. If the constant k is negative, then the

process is an exponential decay process, rather than an exponential growth

process. Exponential decay curves (i.e. k < 0) tend to zero as the variable (t)
approaches ∞, and approach ∞ as the variable approaches −∞. Notice also that

at t = 0, exp(kt) = 1 and so Z(0) = Z0 irrespective of the value or sign of k.

If an exponential process is a function of time, then the constant τ = 1/|k| is

referred to as the ‘time constant’, ‘lifetime’, or ‘e-folding time’, since it is the

time over which y increases or decreases by a factor of e (approximately 2.718).

(τ is the Greek letter tau pronounced to rhyme with ‘cow’.) So an alternative

version of the expression for an exponential process is

Z(t) = Z0 exp(t/τ) (4.7)

Exercise 4.2 As noted above, it is possible to describe an exponential decay by

its e-folding time τ . However, one of the best known exponential functions,

radioactive decay, is often characterized by its half-life τ1/2, the time it takes for

the quantity (and decay rate) to halve. Calculate the ratio of these characteristic

times, τ1/2/τ . Confirm your calculation using Figure 4.4. (Hint: The exponential

decay obeys the equation y(t) = exp(−t/τ). When one half-life τ1/2 has elapsed,

the new value of y is given by y(t+ τ1/2) = exp[−(t+ τ1/2)/τ ], but this must be

equal to half the original value, i.e. y(t+ τ1/2) = 0.5 exp(−t/τ).)
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Figure 4.4 An example of an

exponential decay, showing

the number of radioactive

carbon nuclei in a sample

plotted against time. The time

constant of this process is 8100

years (2.56 × 1011 s) and the

initial number of nuclei is

N0 = 1.0 × 106.

n

4.4 The chain rule

It is sometimes the case that we need to differentiate a function which is itself a

function. A simple example is the expression y(x) = exp(x3), where the function

x3 is itself the argument of an exponential function. Bearing in mind that the

way forward is to reduce the formula in question to something that can be

differentiated using one or more of the rules from Table 4.1, the way around this is

to substitute one variable for another and apply the chain rule:

dy

dx
=

dy

du
× du

dx
(4.8)

Of course, the variables y, x and u above are merely for illustration, and any

three variables could be used. In the example introduced above, we would set

u = x3, so that we have a simple function y(u) = expu to differentiate. Then

dy/du = expu and du/dx = 3x2. So applying the chain rule, the required answer

is dy/dx = 3x2 × expu = 3x2 exp(x3).

Notice that Equation 4.8 implies that differentials can be treated in some ways like

common fractions. Although this is not strictly true, you will generally find

that you can treat differentials in this way without causing any problems. The

following examples drawn from astrophysics should help make the technique

clear.

Worked Example 4.3

The pressure P inside a star, as a function of radius r from the centre, can
Essential skill:

Using the chain rule to solve

astrophysical problems

be expressed as

P (r) = 2πGρ2ca
2/3

[
exp

(
−r2/a2

)
− exp

(
−R2/a2

)]

The quantities represented by G, ρc, a and R are all constants. What is the

rate of change of pressure with respect to radius, dP /dr?
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Solution

The first thing we can do is to simplify the expression somewhat by

replacing the constant terms with some arbitrary constants, by writing

P (r) = A[exp(−r2/a2)−B].

Now, the way to solve this problem is to substitute another variable for the

function inside the bracket of the exponential. Suppose we write

u = −r2/a2, then the original function becomes P (u) = A[exp(u)− B]
which is clearly a lot simpler than the one we started with. Now

dP /du = A expu. However, we require dP /dr not dP /du, so we use the

chain rule

dP

dr
=

dP

du
× du

dr

where, in this case, du/dr = −2r/a2. So we have

dP

dr
= (A exp u)×

(
−2r

a2

)

Now, replacing the original substitution for u the answer is

dP

dr
= A exp

(
− r

2

a2

)
×
(
−2r

a2

)

or
dP

dr
=

(
−2rA

a2

)
exp

(
− r

2

a2

)

and finally replacing the terms for the constant A we have

dP

dr
=

(
−2r

a2
× 2πGρ2ca

2

3

)
exp

(
− r

2

a2

)

or
dP

dr
=

(
−4πGρ2cr

3

)
exp

(
− r

2

a2

)

which describes the rate of change of pressure inside a star with respect to

the distance from the centre.

Worked Example 4.4

The probability for fusion of an atomic nucleus in the core of a star is given
Essential skill:

Using the chain rule to solve

astrophysical problems

by

P = A exp

[
− E

kT
−
(
EG

E

)1/2
]

where A, k and EG are constants, E is the kinetic energy of the nucleus and

T the temperature. What is the rate of change of the probability P with

respect to energy E?

Solution

We need to calculate dP /dE. The way to solve this is to substitute

another variable for the embedded function. Suppose we write
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4.4 The chain rule

u = −(E/kT ) − (EG/E)1/2, then the original function becomes simply

P (u) = A expu, and it is a simple matter to evaluate dP /du = A exp u.

However, we require dP /dE not dP /du, so we use the chain rule

dP

dE
=

dP

du
× du

dE

and the task is now to calculate du/dE.

Using the sum rule and standard derivatives from Table 4.1 (as in Worked

Example 4.1),

du

dE
= − 1

kT
−
(
−1

2
× E

1/2
G

E3/2

)
=

(
EG

4E3

)1/2

− 1

kT

Applying the chain rule therefore,

dP

dE
= A exp u×

[(
EG

4E3

)1/2

− 1

kT

]

and replacing the original substitution the final answer is

dP

dE
=

[(
EG

4E3

)1/2

− 1

kT

]
A exp

[
− E

kT
−
(
EG

E

)1/2
]

This is a fearsome looking expression (!) but it has a useful consequence

which is not difficult to work out. A graph of the original expression reaches

a maximum value at some particular value of E – the energy at which the

probability of fusion occurring is the highest. What is that value of E? It is

where the rate of change of P with respect to E is zero, i.e. where the slope

of the graph is zero (horizontal). It is easy to determine when dP /dE is zero

from the expression we have just calculated, it will occur when the term in

front of the exponential is zero, namely when

(
EG

4E3

)1/2

− 1

kT
= 0

which can be rearranged to give

EG

4E3
=

(
1

kT

)2

or E3 =
EG(kT )

2

4

and therefore E =
[
EG(kT )

2/4
]1/3

. So the maximum probability for

fusion to occur is when a nucleus has just this amount of energy.

Exercise 4.3 When a quasar ejects a cloud of plasma at high speed, the

transverse velocity of the cloud measured by an observer on Earth is given by

V =
β sin θ

1− β cos θ
× c
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where c is the speed of light, β is the speed of ejection divided by the speed of

light and θ is the angle between the line of sight and direction of ejection.

(a) Use the product rule for differentiation by setting p = cβ sin θ and

q = (1 − β cos θ)−1 to calculate dV /dθ. (Hint: You will need to use the

chain rule in order to work out dq/dθ. You will also need to use the identity

sin2 θ + cos2 θ = 1 in order to simplify things during this calculation.)

(b) Use this result to determine the angle at which the maximum value of V is

observed. (Hint: This will occur when the rate of change of V with respect to θ is

zero, i.e. when dV /dθ = 0.)

n

4.5 Logarithmic differentiation

A technique you will often come across in astrophysics and cosmology is that of

logarithmic differentiation. The process as usual is best considered in terms of a

couple of examples. Example 4.5 illustrates the derivative with respect to time

of a logarithmic function and Example 4.6 is a specific example drawn from

astrophysics.

Worked Example 4.5

What is the derivative with respect to time of the quantity loge x?
Essential skill:

Using logarithmic differentiation
Solution

First, we use the chain rule to note that

d(loge x)

dt
=

d(loge x)

dx
× dx

dt

From the rule given at the bottom of Table 4.1,

d(loge x)

dx
=

1

x

So
d(loge x)

dt
=

1

x
× dx

dt

and, as noted in Section 4.1, dx/dt can more compactly be written as ẋ
(pronounced ‘ex-dot’).

So the derivative with respect to time of loge x is simply

d(loge x)

dt
=
ẋ

x
(4.9)

This is a very powerful result. Stated in words, the derivative with respect to time

of the natural logarithm of a variable x is equal to the rate of change of x with

respect to time divided by the variable x.

138



4.6 Expansions

Worked Example 4.6

In a binary star system, mass is transferred from one star to the other. The
Essential skill:

Using logarithmic differentiationmagnitude of the angular momentum (see Section 5.5) of such a system at a

given instant is

J =M1M2

(
Ga

M1 +M2

)1/2

where M1 and M2 are the masses of the two stars, a is their separation and

G is the gravitational constant. Carry out the logarithmic differentiation of

this equation with respect to time in order to express how the separation of

the stars varies in terms of the angular momentum and masses of the stars.

(You may assume that all the mass lost from one star is accreted by the

other, so that the total mass of the system, M1 +M2, is constant.)

Solution

First we take natural logarithms of each side of the equation (refer back to

Section 1.9 if necessary):

loge J = loge(M1M2) +
1

2
loge(Ga) −

1

2
loge(M1 +M2)

For simplicity we replace M1 +M2 by the total mass of the system M , and

rearrange further to give

loge J = logeM1 + logeM2 +
1

2
logeG+

1

2
loge a−

1

2
logeM

Then we differentiate each part of this expression with respect to time,

noting the general result from above that d(loge x)/dt = ẋ/x. So we have

J̇

J
=
Ṁ1

M1
+
Ṁ2

M2
+

Ġ

2G
+

ȧ

2a
− Ṁ

2M

However, G and M are constants, so their rates of change with respect to

time are zero in each case, i.e. Ġ = Ṁ = 0, so this becomes

J̇

J
=
Ṁ1

M1
+
Ṁ2

M2
+

ȧ

2a

which may be rearranged as

ȧ

a
=

2J̇

J
− 2Ṁ1

M1
− 2Ṁ2

M2

This is an important equation governing the evolution of binary stars.

4.6 Expansions

One of the most useful mathematical tools involving calculus is known as Taylor’s

theorem. It is named after Brook Taylor, an English mathematician who published
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the result in 1715. It provides a way of rewriting a (possibly) complex function in

terms of its successive derivatives, such that it can be evaluated more easily.

Taylor’s theorem can be stated as follows: a function f(x) can be ‘expanded’

about the point x = a by writing the Taylor series:

f(x) = f(a) + (x−a)f ′(a) + (x−a)2f ′′(a)/2! + (x−a)3f ′′′(a)/3!. . . (4.10)

where the ‘!’ indicates the mathematical operation of a factorial, such that

2! = 2× 1, 3! = 3× 2× 1, etc. and the ‘prime’ notation has been used to indicate

derivatives such that f ′ = df/dx, f ′′ = d2f/dx2, etc.

The special case where the point about which the expansion is made is a = 0
had been derived earlier by the Scottish mathematician Colin Maclaurin. The

Maclaurin series may be written:

f(x) = f(0) + xf ′(0) + x2f ′′(0)/2! + x3f ′′′(0)/3!. . .etc. (4.11)

As noted above, the use of either the Taylor series, or the related Maclaurin series,

can enable a complex function to be evaluated in an approximate manner. As

usual, a couple of examples will help to demonstrate this. The first is a general

technique which crops up in many areas of physical science, the second is a

specific example of importance to electromagnetic spectra and astrophysics.

Worked Example 4.7

What is the Maclaurin series expansion of the function f(x) = (1 + x)n?
Essential skill:

Using expansions to solve

problems
Solution

We work out the first, second and third derivatives of the function as

f ′(x) = n(1 + x)n−1

f ′′(x) = n(n− 1)(1 + x)n−2

f ′′′(x) = n(n− 1)(n − 2)(1 + x)n−3

So the Maclaurin series expansion is

(1 + 0)n + xn(1 + 0)n−1 +
x2n(n− 1)(1 + 0)n−2

2

+
x3n(n− 1)(n − 2)(1 + 0)n−3

6
+ . . .

Since 1 raised to any power is still 1, this becomes

1 + xn+ x2n(n− 1)/2 + x3n(n− 1)(n − 2)/6 + . . .

The usefulness of this particular expansion becomes apparent if we restrict

ourselves to values of x that are between −1 and +1, in other words if the

magnitude of x is a small number: |x| < 1. In that case x2 will be smaller than |x|
and x3 smaller still. So we may make the following approximation:

For |x| < 1, the first-order expansion is

(1 + x)n ≈ 1 + nx (4.12)
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l Calculate (1 + 0.02)−1.3 using your calculator, and then work out the first

order expansion using the equation above.

m The accurate value is (1 + 0.02)−1.3 = 0.974 585 120 98

The first order expansion is (1 + 0.02)−1.3 ≈ 1 + (−1.3× 0.02) = 0.974.

Worked Example 4.8

The Planck function (see Section 5.9) describes the power per unit area per
Essential skill:

Using expansions to solve

problems

unit frequency per unit solid angle emitted by a so-called black-body source

of electromagnetic radiation. It may be written as the rather fearsome

formula:

Bν(T ) =

(
2hν3

c2

)
1

exp
(
hν
kT

)
− 1

W m−2 Hz−1 sr−1

where ν is the frequency of radiation, T is the temperature of the

black-body, and h, c and k are all constants. In the low-frequency limit, i.e.

hν ≪ kT , the Planck function reduces to a much simpler expression known

as the Rayleigh–Jeans formula.

Use a first-order Maclaurin series expansion of the exponential function to

derive the Rayleigh–Jeans formula from the Planck function.

Solution

We take the exponential function f(ν) = exp(hν/kT ) and calculate its first

derivative as f ′ = (h/kT ) exp(hν/kT ). So the first-order expansion of

f(ν) is

f(ν) = f(0) + νf ′(0)

f(ν) = exp 0 + (hν/kT ) exp 0

Since exp 0 = 1, this becomes simply

f(ν) = 1 + (hν/kT )

So substituting this back into the Planck function, we have

Bν(T ) =
2hν3

c2
1

1 + (hν/kT )− 1

Bν(T ) =
2hν3

c2
kT

hν

Bν(T ) =
2kTν2

c2

which is the low-frequency approximation to the Planck function known as

the Rayleigh–Jeans formula.

Exercise 4.4 (a) Use a first-order Maclaurin series expansion to verify the

small-angle approximation: sin θ ≈ θ, where the angle θ is small and in radians.

(b) What would a slightly more accurate expansion be?

n
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4.7 Partial differentiation

It is often the case that a function will depend on two (or more) variables, rather

than a single variable. For instance, the function h(x, y) may represent the height

of the landscape as a function of two position coordinates x and y. The rate of

change of h with respect to (say) x only is written as ∂h(x, y)/∂x and read as

‘partial dee h by dee x’. The symbol ∂ indicates that a derivative with respect to

only one of the variables (that on the bottom line) is to be considered. For the

purposes of the differentiation, the other variables are treated as constants. So in

the example above, the partial derivative of h with respect to x represents the

slope of the land in the x-direction (Figure 4.5).

h

y

x

∂h

∂x
Figure 4.5 The partial

derivative of the function

describing the height of the

landscape is the slope of the

land in a particular direction.

Worked Example 4.9

The height of a particular region obeys the equation
Essential skill:

Using partial derivatives h(x, y) = x2 + 3xy + 4y2. What is the slope of the land in the y-direction?

Solution

The slope of the land in the y-direction is found as the partial derivative of h
with respect to y. For the purposes of this, we treat x as just another

constant, so,

∂h(x, y)

∂y
= 3x+ 8y

Exercise 4.5 (a) What is the partial derivative with respect to x of the

function y(x, t) = A sin(kx+ ωt), where k and ω are constants?

(b) What is the partial derivative of y(x, t) with respect to t?

(c) What are the second partial derivatives of y(x, t) with respect to x and t,
namely ∂2y/∂x2 and ∂2y/∂t2?

n
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4.8 Differentiation and vectors

Differentiation is not restricted to scalars; it can be done to vectors too.

If p = (px, py, pz) then
dp

dt
=

(
dpx
dt
,

dpy
dt
,

dpz
dt

)

Note furthermore that the derivative of a vector is also a vector, so has direction as

well as magnitude. It is possible to imagine cases where p = constant, but

dp/dt 6= 0. That is, where the magnitude of the vector is constant, but the

direction changes.

In order to consider the differentiation of a field, it is useful to define the vector

differential operator nabla (also sometimes called del, or the grad operator) in

terms of its three components as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(4.13)

where the ∂ symbol represents a partial derivative. Nabla is called a vector

differential operator because it is a vector that can be used to perform

a differential operation on other quantities, namely fields. Nabla is itself a

three-dimensional vector with the three components indicated. It can be applied to

either scalar or vector fields in several ways, as described below.

The gradient of a scalar field, such as T (x, y, z), is defined as ∇T , pronounced

‘grad T’. Since ∇ is a vector and T is a scalar field (i.e. a scalar function defined

at each point in space), the expression ∇T is a vector field. So we can write the

components of ∇T as

∇T =

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
= a vector field (4.14)

Suppose T (x, y, z) is a scalar field representing the temperature inside a star. The

gradient of the scalar field is simply the way in which the temperature changes

with distance in each direction – the temperature gradient in kelvin per metre if

you like. The vector ∇T points in the direction of the steepest slope.

Worked Example 4.10

Suppose T is a scalar field represented by T = 3xy2 + 4yz2 + 5zx2. What

is the gradient of this scalar field at any point?

Solution

The x-component of the gradient is ∂T/∂x = 3y2 + 10zx; the y-component

of the gradient is ∂T/∂y = 6xy + 4z2; and the z-component of the gradient

is ∂T/∂z = 8yz + 5x2. So the gradient of the scalar field T is the vector

field with components (3y2 + 10zx, 6xy + 4z2, 8yz + 5x2).

Exercise 4.6 If a certain scalar field h(x, y) represents the altitude of the

landscape as a function of position coordinates x and y, what does the gradient of

this scalar field ∇h represent?

n
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The vector differential operator ∇ can also operate on vector fields, as well as on

scalar fields. However, as you know from Section 1.13, there are two ways of

multiplying vectors together. So, as you might guess, there are two ways of using

the vector differential operator when operating on vector fields. The equivalent of

the scalar (or dot) product is the operation known as divergence or div, whilst the

equivalent of the vector (or cross) product is the operation known as curl.

Consider a vector field A with components Ax, Ay, Az at each point in space.

The divergence of this vector field is given by

divA = ∇ ·A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
= a scalar field (4.15)

The curl of a vector field A is given by

curlA = ∇ × A (4.16)

=

((
∂Az

∂y
− ∂Ay

∂z

)
,

(
∂Ax

∂z
− ∂Az

∂x

)
,

(
∂Ay

∂x
− ∂Ax

∂y

))

= a vector field

The new vector field which is the curl of the vector field A, describes the rotation

of the original vector field. For instance, if the vector field A represents the flow

velocity of a moving fluid, then the curl is the circulation density of the fluid.

4.9 Differential equations

In Chapter 1, you saw how to rearrange equations so that the variable of interest

is isolated on the left-hand side. However, it is not always possible to solve

equations in such a straightforward manner. One such form of equation that defies

a simple algebraic solution is when a quantity and its derivative both appear

together. Such an equation is called a differential equation.

In astrophysics and cosmology, several common differential equations are

encountered. One is where the decay rate of a radioactive sample is proportional

to the amount present: dy/dt = −ky. A second example is simple harmonic

motion, in which the force on an object is proportional to its displacement from an

equilibrium position: md2x/dt2 = −kx.

Many differential equations, including most that you will encounter, have general

solutions that can be applied when needed. General solutions are functions

(usually, but not always, expressed as an equation) that always satisfy the

differential equation, but which necessarily contain extra constants whose values

can only be determined by reference to the specific problem at hand. If a

differential equation contains only first derivatives (a first-order differential

equation), then the general solution will contain just one extra constant compared

to the original equation. The general solution for a differential equation involving

second derivatives (a second-order differential equation) will require two

additional constants.

For example, the general solution for the radioactive decay problem has already

been met in Section 4.3. You can verify that y = a exp(−kt) is a solution by

substituting this into the differential equation dy/dt = −ky, recalling from
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Table 4.1 that the derivative of a exp(−kt) with respect to t is −ak exp(−kt).
Note that the solution has one additional parameter, a, compared to the original

differential equation, so is the general solution.

The differential equation

dy

dt
= −ky (4.17)

has a solution

y = a exp(−kt) (4.18)

Additional information is required to determine the values of the extra constants

in the general solution and thus to convert the general solution into a particular

solution for a particular problem. For the radioactive decay problem, this would

involve finding the value of a. The additional information often comes in the form

of initial conditions or boundary conditions that describe the state of the physical

system at some particular time or place. For the decay problem, knowledge of the

decay rate at one time would provide enough information to determine the value

of a in terms of k (which is specified as part of the problem). If the value of k is

not already specified in the problem, then measurement of a second decay rate at a

second time will complete the information to measure both a and k.

Another important type of differential equation is that describing simple harmonic

motion: md2x/dt2 = −kx. This describes the acceleration of a particle which is

subject to a force whose magnitude is proportional to its displacement and whose

direction is such as to always oppose the motion. The general solution for simple

harmonic motion is x = A sin(ωt+ φ).

The differential equation

m
d2x

dt2
= −kx (4.19)

has a solution

x = A sin(ωt+ φ) (4.20)

where ω =
√
k/m (4.21)

Note the appearance of two additional constants in the general solution, A and φ,

as expected for a differential equation containing second derivatives. Finding a

particular solution for x in this case would require knowledge of the parameters

k and m (specified as part of the problem) to give ω, plus two initial and/or

boundary conditions capable of giving the amplitude A of the oscillation and the

initial phase φ.

Exercise 4.7 Use the standard rules in Table 4.1 to verify that

x = A sin(ωt+ φ) is a solution to the differential equation md2x/dt2 = −kx,

where ω =
√
k/m.

n
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4.10 Integration and curved graphs

Previous sections have described how the gradient of a graph of y versus x has a

special physical significance: it tells us the rate of change of the y-variable as the

x-variable changes. The gradient can be computed by graphical methods or by

differentiation.

The area under a graph of y versus x, meaning the area enclosed by (i) the

plotted curve, (ii) the x-axis, and (iii) two boundaries formed by vertical lines at

two particular values of x, also often has physical significance. For example, if we

have a graph of the speed of an object as a function of time, the area under the

curve indicates the distance travelled by the object between two specified values

of time. This result probably isn’t clear to you yet – it will be explained below –

but it will give you an idea of why it is useful in physics and astrophysics to study

the area under a graph.

Begin by considering a body moving with constant speed v. The speed is given

by the distance ∆s travelled in some time interval ∆t, divided by the time

interval: v = ∆s/∆t. If we know the speed, but not the distance travelled, we can

nevertheless calculate the distance travelled from the rearranged equation:

∆s = v∆t.

Now consider a body moving with non-uniform speed, whose speed versus time

graph is shown in Figure 4.6a. If we consider a brief time interval ∆t1 from

t = tA to t = tA +∆t1 during which the speed changes very little, then we can

approximate the distance travelled as v1∆t1. The subscript ‘1’ on the speed

indicates that we want the speed during the time interval ∆t1. The distance ∆s1
travelled during this time interval is ∆s1 ≈ v1 ∆t1.

∆t

0 t/s 0 t/stA tB tA tB

3

2

1

4

∆t

∆t

∆t

∆t

∆t

∆t

v
x
/m
 s

−1

3

2

1

4

v
x
/m
 s

−1

(a) (b)
1 2 3 4 1 2 3 4

Figure 4.6 A graph of speed versus time, with the interval between t = tA and

t = tB divided into (a) six time intervals of uniform width ∆t and (b) into twelve

finer time intervals.

Likewise, the distance ∆s2 travelled during the time interval ∆t2 from

t = tA +∆t1 to t = tA +∆t1 +∆t2 is just ∆s2 ≈ v2 ∆t2. To calculate the total

distance travelled between t = tA and t = tB, we simply add the distance

travelled during each brief time interval; Figure 4.6a divides this into six intervals,
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so

∆s = ∆s1 +∆s2 +∆s3 +∆s4 +∆s5 +∆s6

≈ v1 ∆t1 + v2∆t2 + v3∆t3 + v4 ∆t4 + v5 ∆t5 + v6 ∆t6

Using summation notation, we could write this as

∆s ≈
6∑

i=1

vi ∆ti (4.22)

Note, however, that this is just the area under the curve, i.e. the area enclosed by

(i) the velocity curve, (ii) the x-axis, and (iii) the vertical boundaries at t = tA and

t = tB. That is, the area under the speed versus time curve, calculated over the

time interval from tA to tB, gives the distance travelled by the body over that time.

The calculation of the area given above is not perfect because the area v∆t of

each rectangle of height v and width ∆t in Figure 4.6a is only an approximation

to the area under the curve. It would be exact if the speed increased linearly with

time, but, because the graph is curved, the approximation is imperfect. However,

the approximation can be made better by choosing smaller time intervals, as in

Figure 4.6b. In fact, as still smaller time intervals are chosen, the approximation

becomes even better, and it becomes exact in the limit where ∆t shrinks to zero.

Just as for differentiation, where the notation is changed in the limit where

intervals shrink to zero, we can replace the summation with a new form:

∆s ≈
6∑

i=1

vi∆ti becomes ∆s =

tB∫

tA

v(t) dt (4.23)

where

tB∫

tA

v(t) dt = lim
∆t→0

∑

i

vi∆ti (4.24)

where v(t) indicates that the speed is a function of time, i.e. not constant, dt
indicates that we are considering the limit of infinitesimal time intervals, and∫ tB
tA

indicates that we sum over the time interval from t = tA to t = tB. This

expression is referred to as ‘the definite integral of v with respect to t from tA to

tB.’

4.11 Integration of known functions

The next thing to note is that integration, the technique of forming integrals,

can be performed directly on equations without needing to consider graphs.

Furthermore, integration can be regarded almost as the inverse of differentiation;

if the derivative of f with respect to t is f ′, then the integral of f ′ with respect to t
is f + C , where C is a constant. It is because of the need for the constant C that

integration and differentiation are not exact inverses.

Finally note that we can distinguish between a definite integral, which is an

integration between two specified limits (e.g. t = tA and t = tB as above), and an
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indefinite integral in which the equation of the integral is found without reference

to specified limits. As an example, recall from Section 4.2 that the derivative of x2

with respect to x is 2x. The indefinite integral of 2x with respect to x is therefore

x2 + C . The definite integral of 2x with respect to x over the interval from x = 2
to x = 6, say, can be found by evaluating the indefinite integral at both limits, and

subtracting the first from the second. That is,

x=6∫

x=2

2x dx =
[
x2 +C

]x=6

x=2

where the square brackets signify that the integral is to be evaluated between the

two limits shown. Hence

x=6∫

x=2

2x dx = (62 +C)− (22 + C) = 32

Some other indefinite integrals are listed in Table 4.2, where integrals are given

with respect to some variable, t. The symbols ω, a, n and k are constants (that is,

independent of t) and C is an unknown constant introduced in each case.

Table 4.2 Some functions

and their indefinite integrals.

Function Integral

f(t)
∫
f(t) dt

a at+ C
at 1

2at
2 + C

atn (n 6= −1) atn+1

n+1 +C

a/t a loge t+ C

a sin(ωt) −a cos(ωt)
ω + C

a cos(ωt) a sin(ωt)
ω + C

a exp kt a exp kt
k + C

The equivalent of the sum rule for differentiation is the following simple

expression, known as the sum rule for integration:
∫

(u+ v) dt =

∫
u dt+

∫
v dt (4.25)

where u and v are both themselves functions of t in this case. The equivalent

of the product rule for differentiation will be discussed in Section 4.13. The

following examples illustrate some of the rules for integration in Table 4.2 using

examples from astrophysics and cosmology.

Worked Example 4.11

The spectral flux density of a quasar in a particular region of its spectrum
Essential skill:

Using integration to solve

astrophysical problems

can be represented by the expression Fν = Kν−0.7, where K is a constant.

Evaluate the indefinite integral
∫
Fν dν.

Solution

Using the rule from line 4 of Table 4.2.
∫
Kν−0.7 dν = K

[
ν−0.7+1

−0.7 + 1

]
+C

=
(
Kν+0.3/0.3

)
+ C

Worked Example 4.12

The spectral flux density of the same quasar in a different region of its
Essential skill:

Using integration to solve

astrophysical problems

spectrum can be represented by the expression Fν = Kν−1.0, where K is a

constant. Evaluate the definite integral
∫ ν2
ν1
Fν dν which represents the total

power received per unit area in the spectral range ν1 to ν2.
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Solution

Since the power to which ν is raised is −1.0, this time we need the rule from

the fifth row of Table 4.2.
∫ ν2

ν1

Kν−1.0 dν = K [loge ν + C]ν2ν1

= K(loge ν2 + C − loge ν1 − C)

= K loge

(
ν2
ν1

)

Exercise 4.8 Evaluate the following indefinite integrals:

(a)

∫
GMm

r2
dr (b)

∫ (
b expx+

1

x

)
dx

n

4.12 Integration by substitution

As with differentiation, the key to carrying out integration of a function is to try to

reduce it to something that can be integrated by following one of the standard

rules in Table 4.2. Just as it is sometimes necessary to substitute one variable for

another in order to carry out a differentiation, it is also sometimes necessary to do

this to carry out an integration. The technique of integration by substitution is also

referred to as integration by change of variable. As before, some examples should

make the process clear. The first example simply illustrates the technique, whilst

the second one applies the technique to an astrophysical problem.

Worked Example 4.13

Evaluate the indefinite integral
Essential skill:

Using the technique of

integration by substitution

∫
x

(x2 + 1)5
dx

Solution

We make the substitution z = x2 + 1, and note that dz/dx = 2x. In order to

carry out the integration with respect to this new variable, z, we must

eliminate all occurrences of x in the original integral, and write things in

terms of the new variable z only. We therefore write the bottom line of the

integral as z5 and replace dx by dz/2x, giving
∫

x

z5
dz

2x
=

∫
1

2z5
dz
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Luckily the remaining xs cancelled out leaving an expression we can

integrate using line 4 from Table 4.2, so
∫

1

2z5
dz =

1

2
× 1

−4z4
+ C = C − 1

8z4

Then reversing the original substitution gives
∫

x

(x2 + 1)5
dx = C − 1

8(x2 + 1)4

Notice that, once again, we treated ‘dz/dx’ like a normal fraction when we

replaced dx by dz/2x.

Worked Example 4.14

A star essentially forms by the self-gravitational contraction of a cloud of
Essential skill:

Using the technique of

integration by substitution

gas. In order to estimate the timescale for this to happen it is useful to

evaluate the so-called free-fall time tff for a spherical shell of initial radius

r0 enclosing mass m0. This is given by the integral

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

[
x

1− x

]1/2
dx

where x = r/r0, i.e. the radius as a fraction of the initial radius. Evaluate

the free-fall time by using the substitution x = sin2 θ. You will also need the

trigonometric relationships: sin2 θ + cos2 θ = 1 and 2 sin2 θ = 1− cos(2θ).

Solution

As suggested, we make the substitution x = sin2 θ, so the first thing to

calculate is dx/dθ in order to substitute for dx in the original integral.

A simple way to calculate this is to make a further substitution, sin θ = z, so

we now have x = z2. Now, dx/dz = 2z and dz/dθ = cos θ, so by the chain

rule, dx/dθ = dx/dz × dz/dθ = 2z × cos θ = 2 sin θ cos θ.

Substituting for x and dx, the original integral now becomes

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

[
sin2 θ

1− sin2 θ

]1/2
× 2 sin θ cos θ dθ

From Equation 1.37, 1− sin2 θ = cos2 θ, so we have

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

[
sin2 θ

cos2 θ

]1/2
× 2 sin θ cos θ dθ

Simplifying the term in square brackets under the integral

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

sin θ

cos θ
× 2 sin θ cos θ dθ
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and cancelling the cos θ terms

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

2 sin2 θ dθ

In order to integrate this function, we now use the suggested trigonometric

relationship 2 sin2 θ = 1− cos(2θ),

tff =

[
r30

2Gm0

]1/2
×

x=1∫

x=0

[1− cos(2θ)] dθ

and finally we have a function we can integrate using the sum rule:

tff =

[
r30

2Gm0

]1/2
×
[
θ +

sin(2θ)

2

]x=1

x=0

To evaluate the integral between the limits, we need to convert the limits into

their equivalent values of θ. Since x = 0 sin2 θ, when x = 0, then θ = 0 and

when x = 1, then θ = π/2 radians. So the equation becomes

tff =

[
r30

2Gm0

]1/2
×
[
θ +

sin(2θ)

2

]θ=π/2

θ=0

tff =

[
r30

2Gm0

]1/2
×
[
π

2
+

sinπ

2
− 0− sin 0

2

]

sinπ and sin 0 are both equal to zero, so the final answer for the free-fall

time is

tff =

[
r30

2Gm0

]1/2
× π

2
=

(
π2r30
8Gm0

)1/2

This was a laborious integration to carry out, but the (many!) individual

steps are each straightforward. You will not be asked to carry out such

lengthy integrals in assignments or examinations, but you should be able to

follow the reasoning of an example such as this, and appreciate how the final

result is arrived at.

The obvious question you may be asking is, how do I know what substitution is

appropriate in a given case? Well, there is no simple answer to this question. In

the examples you will meet, the substitution will either be given to you, or will be

reasonably obvious, as in the two examples above.

Exercise 4.9 Evaluate the definite integral

x=a∫

x=0

1√
a2 − x2

dx

by using the substitution x = a sin θ. (Hint: You will need to use the identity
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sin2 θ + cos2 θ = 1 in order to simplify things during this calculation.)

n

4.13 Integration by parts

As you saw earlier, the product rule for differentiation is

d(uv)

dt
= u

dv

dt
+ v

du

dt

where u and v are both functions of t in this case. If we now integrate the above

expression with respect to t we obtain
∫

d(uv)

dt
dt =

∫
u

dv

dt
dt+

∫
v

du

dt
dt

remembering that dt/dt = 1, this simplifies to

uv =

∫
u dv +

∫
v du

Finally, rearranging this result we obtain
∫
u dv = uv −

∫
v du (4.26)

This expression describes a technique referred to as integration by parts. It

allows us to integrate quite complicated products of functions. Success with the

formula relies on choosing u and dv such that
∫
v du is easier to calculate than∫

u dv. Once again, an example should help to make things clear.

Worked Example 4.15

The so-called mean free path travelled by an atomic nucleus before it
Essential skill:

Carrying out integration by parts undergoes a nuclear reaction in the core of a star is given by

L =

∫ x=∞

x=0
σnx exp(−σnx) dx

where σ and n are constants representing the reaction cross-section and the

number of target particles per unit volume respectively. Use the technique of

integration by parts to evaluate this definite integral.

Solution

We first make the substitutions, u = σnx and dv = exp(−σnx) dx.

So we are now trying to evaluate
∫
u dv and we know from Equation 4.26

that this is equal to uv −
∫
v du. In order to work this out, we need to

calculate v and du.

Clearly, du/dx = σn, so we can write du = σn dx.

Also,

v =

∫
dv =

∫
exp(−σnx) dx =

exp(−σnx)
−σn
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4.14 Multiple integrals

We neglect the integration constant here, since we’re carrying out a definite

integral which means it would cancel out eventually.

To summarize, the four substitutions we now have are:

u = σnx

du = σn dx

v =
exp(−σnx)

−σn
and dv = exp(−σnx)dx

So now we can write

uv −
∫
v du =

[
σnx exp(−σnx)

−σn

]x=∞

x=0

−
∫ x=∞

x=0

σn exp(−σnx)
−σn dx

The various σn terms cancel, leaving

L = [−x exp(−σnx)]x=∞

x=0 +

∫ x=∞

x=0
exp(−σnx) dx

We now integrate the right-hand term to give

L = [−x exp(−σnx)]x=∞

x=0 +

[
exp(−σnx)

−σn

]x=∞

x=0

At this point we note that exp(−∞) = 0 and exp 0 = 1, so we have

L = [0− 0] +

[
0

−σn − 1

−σn

]
=

1

σn

So the mean free path L is just the reciprocal of the reaction cross-section

times the number of target particles per unit volume. This makes sense – if

either of these quantities increase, the mean distance a nucleus travels before

reacting is reduced.

Clearly, the choice of u and dv worked well. Had we chosen to put

u = exp(−σnx) and dv = σnx dx, the integration would have been much

more complicated than the one we started with.

Exercise 4.10 Use the technique of integration by parts to evaluate the

indefinite integral
∫
loge x dx. You should use the substitutions u = loge x and

dv = dx.

n

4.14 Multiple integrals

It is frequently the case when solving physical problems that an integral has to be

carried out in more than one dimension.

153



Chapter 4 Calculus

The first such example to consider is that of a surface integral. For instance, an

accretion disc around a compact star will have a surface density, denoted by the

Greek upper-case letter Σ (sigma), which may be a function of both distance from

the centre (r) and the azimuthal angle around the disc (θ). This is effectively a

system of plane polar coordinates. The surface density at a particular position

(r, θ), as illustrated in Figure 4.7, is defined as the total mass per unit area within

a vertical column through the disc at that position. The total mass within the disc

is therefore the integral of the surface density with respect to both r and θ, which

may be written

Mdisc =

∫ r=R

r=0

∫ θ=2π

θ=0
Σ(r, θ)r dr dθ (4.27)

θ r

Σ (r,θ )

Figure 4.7 The surface

density Σ(r, θ) of an accretion

disc around a compact star may

vary in both a radial coordinate

r and an azimuthal coordinate θ.

Notice the extra factor of r introduced by converting from Cartesian coordinates

(x, y) to plane polar coordinates (r, θ).

The integrals are carried out in turn for one variable then the other, with φ ranging

from 0 to 2π and r ranging from 0 to R, the outer radius of the disc. In practice, Σ
may be a function of r only, so the integral over the angle φ is straightforward,

and if Σ is a constant, the integration is simpler still, as the following example

illustrates.

Worked Example 4.16

If the surface density of an accretion disc is constant throughout with a
Essential skill:

Carrying out a multiple integral value Σ, what is the total mass of a disc of radius R?

Solution

The mass may be found by first integrating over the angle φ to get

Mdisc =

∫ r=R

r=0

∫ θ=2π

θ=0
Σr dr dθ

=

∫ r=R

r=0
[Σθr]θ=2π

θ=0 dr

=

∫ r=R

r=0
Σ2πr dr

then by integrating over r

Mdisc =

[
Σ2πr2

2

]r=R

r=0

= ΣπR2

That is to say, the mass of the disc is just the surface density multiplied by

the area of the disc, as expected for a constant surface density.

Another commonly encountered situation is that of a volume integral. For

instance, the density inside a star, denoted by the symbol ρ, may be a function of

the x, y, z Cartesian coordinates within the star, i.e. ρ(x, y, z), or equivalently it

may be expressed more conveniently in terms of spherical coordinates with

respect to the centre of the star, i.e. ρ(r, φ, θ). As in the example above, the total

mass of the star is then the integral of the density over all three coordinates,
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4.14 Multiple integrals

written as

Mstar =

∫ r=R

r=0

∫ φ=2π

φ=0

∫ θ=π

θ=0
ρ(r, φ, θ)r2 sin θ dr dφ dθ (4.28)

Notice the extra factor of r2 sin θ introduced by converting from Cartesian

coordinates (x, y, z) to spherical coordinates (r, φ, θ).

Worked Example 4.17

Use Equation 4.28 to determine the mass of a spherical gas cloud of radius
Essential skill:

Carrying out a multiple integralR and of uniform density ρ0.

Solution

The mass of the cloud is given by

M =

∫ r=R

r=0

∫ φ=2π

φ=0

∫ θ=π

θ=0
ρ0 r

2 sin θ dr dφ dθ

First integrating with respect to the angle θ:

M =

∫ r=R

r=0

∫ φ=2π

φ=0

[
−ρ0r2 cos θ

]θ=π

θ=0
dr dφ

M =

∫ r=R

r=0

∫ φ=2π

φ=0

[
(−ρ0r2 ×−1)− (−ρ0r2 × 1)

]
dr dφ

M =

∫ r=R

r=0

∫ φ=2π

φ=0
2ρ0r

2 dr dφ

then integrating with respect to the angle φ:

M =

∫ r=R

r=0

[
2ρ0r

2φ
]φ=2π

φ=0
dr

M =

∫ r=R

r=0

[
(2ρ0r

2 × 2π)− (2ρ0r
2 × 0)

]
dr

M =

∫ r=R

r=0
4πρ0r

2 dr

and finally integrating with respect to r:

M =

[
4πρ0r

3

3

]r=R

r=0

=
4

3
πρ0R

3

which is as expected, given that the volume of a sphere is 4πR3/3.

Exercise 4.11 Suppose that the density within a star is given by

ρ(r, φ, θ) = R2ρ0/r
2, where ρ0 is a constant (the density at r = R) and R is the

radius of the star. Calculate the total mass of the star.

n
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Summary of Chapter 4

1. Differentiation is a means of finding how one quantity changes as a result of

changes in another. The function dy/dt represents the rate of change of y
with t, and is known mathematically as the derivative of y with respect to t.

2. Alternative ways of writing dy/dt include ẏ and y′. The second derivative of

y with respect to t may be written d2y/dt2 or ÿ or y′′.

3. Two particularly useful rules for differentiating functions are the sum rule

and product rule, namely

d(u+ v)

dt
=

du

dt
+

dv

dt
d(uv)

dt
= u

dv

dt
+ v

du

dt

where u and v are themselves functions of t in this case.

4. The chain rule for differentiation states that

dy/dx = dy/du× du/dx

5. There are many standard derivatives, but two of the most useful are

if y = atn then dy/dt = natn−1

if y = a exp(kt) then dy/dt = ak exp(kt)

6. Logarithmic differentiation involves taking the natural logarithm of an

equation before evaluating the derivative. The derivative of a natural

logarithm with respect to time is often written as

d(loge x)

dt
=
ẋ

x

7. The Maclaurin series expansion of a function f(x) about the point x = 0
may be written

f(x) = f(0) + xf ′(0) + x2f ′′(0)/2! + x3f ′′′(0)/3! + . . . etc.

8. A partial derivative indicates the rate of change of a function with respect to

only one of the variables on which it depends. If h is a function of both x

and y then
∂h(x,y)

∂x represents the rate of change of h with respect to x only,

with y held constant.

9. The vector differential operator nabla is defined as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

and the gradient of a scalar field T is then given by

gradT = ∇T =

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
= avector field

The divergence of a vector field A with components Ax, Ay, Az at each

point in space is given by

divA = ∇ ·A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
= a scalar field
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The curl of this vector field A is given by

curlA = ∇ × A

=

((
∂Az

∂y
− ∂Ay

∂z

)
,

(
∂Ax

∂z
− ∂Az

∂x

)
,

(
∂Ay

∂x
− ∂Ax

∂y

))

= a vector field

10. The first-order differential equation dy
dt = −ky has a solution

y = a exp(−kt), where a is an arbitrary constant determined by the

boundary conditions.

11. The second-order differential equation m d2x
dt2

= −kx has a solution

x = A sin(ωt+ φ), where ω =
√
k/m, and both A and φ are arbitrary

constants determined by the boundary conditions.

12. The expression
∫ tB
tA
v(t) dt is referred to as the definite integral of v with

respect to t from tA to tB . It can be envisaged as the area under a graph of v
against t between the two limits specified.

13. The evaluation of indefinite integrals (no limits specified) always involves

the introduction of a constant of integration.

14. There are many standard integrals, but two of the most useful are:

if y = atn then

∫
y dt =

atn+1

n+ 1
+ C (for n 6= −1)

if y = a exp(kt) then

∫
y dt =

a exp(kt)

k
+ C

15. The sum rule for integration is
∫
(u+ v) dt =

∫
u dt+

∫
v dt, where both u

and v are functions of t in this case.

16. Integration by substitution (or change of variable) is a technique that allows

difficult integrals to be reduced to simpler ones.

17. Integration by parts is described by the expression
∫
u dv = uv −

∫
v du; it

relies on choosing u and dv such that
∫
v du is easier to calculate that

∫
u dv.

18. Surface and volume integrals are carried out by integrating a function with

respect to each coordinate in turn.

157



Chapter 4 Calculus

This page is intentionally left blank to ensure that subsequent chapters begin on an

odd-numbered page.

158



Chapter 5 Physics

Introduction

This chapter will allow you to revise your knowledge of physics. If you have

recently completed a Level 2 physics course (such as S207), most of this chapter

will probably be familiar to you.

It is particularly true of this chapter that we simply present results to you rather

than deriving them from first principles. As with the rest of this document,

you should therefore think of this chapter as a resource which brings together

principles of physics which may be referred to in subsequent parts of the course.

5.1 Describing motion

A description of the motion of bodies lies at the heart of much of physics and

astrophysics, and provides a sensible place to start consolidating your knowledge

of the physics required to study Level 3 astrophysics and cosmology.

5.1.1 Motion in one dimension

The movement of a particle along a line can be described graphically by plotting

values of the particle’s position x, against the corresponding times t, to produce a

position–time graph (Figure 5.1a). Alternatively, by choosing an appropriate

reference position xref and defining the displacement from that point by

sx = x− xref, the motion may be described by means of a displacement–time

graph (Figure 5.1b).
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Figure 5.1 (a) A straight line position–time graph. (b) A straight line

displacement–time graph.
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Uniform motion along a line is characterized by a straight line position–time

graph that may be described by the equation

x = vxt+ x0

where vx and x0 are constants. Physically, vx represents the particle’s velocity,

the rate of change of its position with respect to time, and is determined by the

gradient of the position–time graph

vx =
∆x

∆t
=
x2 − x1
t2 − t1

x0 represents the particle’s initial position, its position at t = 0, and is determined

by the intercept of the position–time graph, the value of x at which the plotted line

crosses the axis labelled x, provided that axis has been drawn through t = 0.

Non-uniform motion along a line is characterized by a position–time graph that is

not a straight line. In such circumstances the rate of change of position with

respect to time may vary from moment to moment and defines the instantaneous

velocity. Its value at any particular time is determined by the gradient of the

tangent to the position–time graph at that time (Figure 5.2a).
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tangent
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(a) (b)

Figure 5.2 (a) A position–time graph for non-uniform motion. The

instantaneous velocity at a particular time is determined by the gradient of the

tangent to the graph at that time. (b) A velocity–time graph for non-uniform

motion. The instantaneous acceleration at a particular time is determined by the

gradient of the tangent to the graph at that time.

More generally, if the position of a particle varies with time in the way described

by the function x(t), then the way in which the (instantaneous) velocity varies

with time will be described by the associated derivative

vx(t) =
dx(t)

dt
(5.1)

The instantaneous acceleration is the rate of change of the instantaneous velocity

with respect to time. Its value at any time is determined by the gradient of the
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tangent to the velocity–time graph at that time (Figure 5.2b). More generally, the

way in which the (instantaneous) acceleration varies with time will be described

by the derivative of the function that describes the instantaneous velocity, or,

equivalently, the second derivative of the function that describes the position:

ax(t) =
dvx(t)

dt
=

d2x(t)

dt2
(5.2)

The area under a velocity–time graph, between specified values of time, represents

the change in position of the particle during that interval.

Uniformly accelerated motion is a special form of non-uniform motion

characterized by a constant value of the acceleration (ax = constant). In such

circumstances the most widely used equations describing uniformly accelerated

motion are

sx = uxt+
1

2
axt

2 (5.3)

vx = ux + axt (5.4)

v2x = u2x + 2axsx (5.5)

sx =

(
vx + ux

2

)
t (5.6)

Position, x, displacement, sx, velocity, vx, and acceleration, ax, are all quantities

that may be positive or negative, depending on the associated direction. The

magnitude of each of these quantities is a positive quantity that is devoid of

directional information. The magnitude of the displacement of one point from

another, s = |sx|, represents the distance between those two points, while the

magnitude of a particle’s velocity, v = |vx|, represents the speed of the particle.

Exercise 5.1 A particle accelerates from rest at a rate of 5.0 m s−2. (a) What

distance has it covered after 10 s? (b) How fast is it travelling after this time?

n

5.1.2 Motion in two or three dimensions

In describing motion in one dimension, although we wrote everything in terms of

scalar quantities, we were actually using vector components in the x-direction.

(Remember, each component of a vector is itself a scalar.) In turning to describe

motion in two or three dimensions, the simple extrapolation is to now use the full

vector descriptions of quantities such as displacement, velocity and acceleration.

(Refer back to Section 1.13 if necessary for a reminder about vectors.)

The displacement vector s = (sx, sy, sz) from point P1 with position vector

r1 = (x1, y1, z1) to point P2 with position vector r2 = (x2, y2, z2) is given by

s = r2 − r1 = (x2 − x1, y2 − y1, z2 − z1) = (sx, sy, sz) (5.7)

The magnitude of this vector, s =
√
s2x + s2y + s2z , is the distance from P1 to P2.
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The velocity v = (vx, vy, vz) of a particle is determined by the rate of change of

the particle’s position:

v =
dr

dt
=

(
dx

dt
,

dy

dt
,

dz

dt

)
(5.8)

This vector’s magnitude, v =
√
v2x + v2y + v2z , is the speed v of the particle.

The acceleration a = (ax, ay, az) of a particle is determined by the rate of change

of the particle’s velocity:

a =
dv

dt
=

(
dvx
dt
,

dvy
dt
,

dvz
dt

)
(5.9)

In two (or three) dimensions the motion of a particle may be regarded as the sum

of two (or three) separate motions, mutually at right angles, that are independent

apart from their common duration.

5.1.3 Periodic motion

A study of periodic motion is particularly useful in a topic such as astrophysics,

where bodies are often in orbit around other bodies: planets around stars, stars

around each other, and groups of stars around the centre of galaxies, for instance.

By definition, periodic motion is repetitive, and the simplest such motion to

consider is that of motion in a circle (Figure 5.3).

y-axis

x-axis

R

θ

origin

ω t

x(t)

y (t)

θ0

Figure 5.3 Uniform circular

motion around a circle of

radius R, centred on the origin,

in the anticlockwise sense,

with angular speed ω. The

initial value (at time t = 0 s) of

the angular coordinate θ is

indicated by θ0.

The symbol ω (omega) is generally used to represent the (constant) angular

speed of the motion, defined by ω = |dθ/dt| , where θ is the angle between the

position vector of the particle and the x-axis. A particle in uniform circular

motion completes one revolution (2π radians) in one period (usually represented

by the symbol P or T ). So in this case the angular speed is simply

ω = 2π/P (5.10)

The instantaneous velocity is tangential to the circle and has magnitude v = rω.

The centripetal acceleration is directed towards the centre of the circle and has

magnitude

a = vω = rω2 = v2/r (5.11)
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Exercise 5.2 A neutron star is in a circular orbit around its companion star,

completing one orbit every 10 days. If the distance of the neutron star from the

centre of the companion star is 3.7 × 1010 m, (a) what is the magnitude of the

instantaneous velocity of the neutron star and (b) what is the magnitude of its

centripetal acceleration?

n

More generally, astronomical bodies orbit each other following paths which are

ellipses (Figure 5.4). An ellipse of semimajor axis a and semiminor axis b may be

described by the equation

x2

a2
+
y2

b2
= 1

Such an ellipse has eccentricity e = 1
a

√
a2 − b2, where 0 ≤ e < 1, and contains

two foci, located at the points (ae, 0) and (−ae, 0). The sum of the two distances

from any point on the ellipse to the two foci is a constant, equal to 2a.

y

x

b

a

focus

semimajor
axis

semiminor
axis

semiminor
axis

semimajor
axis

−a

−ae

−b

y

x

b

a−a

−b

focus

P

(−ae, 0) (ae, 0)
focus

focus
ae

Figure 5.4 The properties

of an ellipse.

5.2 Newton’s laws

Newton’s three laws of motion lie at the heart of predicting how bodies will move.

In addition, his law of universal gravitation can be used to account for many of the

types of motion that are encountered in astrophysics and cosmology. In this

section we look at each of these laws in turn.

163



Chapter 5 Physics

5.2.1 Newton’s laws of motion

According to Newton’s first law of motion:

A body remains at rest or in a state of uniform motion unless it is acted on

by an unbalanced force.

The law therefore introduces force as a quantity that changes the motion of a body

by causing it to accelerate.

The description of a body’s motion depends on the frame of reference from which

the motion is observed. (A frame of reference is a system for assigning position

coordinates and times to events.) An inertial frame is a frame of reference in

which Newton’s first law holds true; it is a frame of reference that is not itself

accelerating. Any frame that moves with constant velocity relative to an inertial

frame, while maintaining a fixed orientation, will also be an inertial frame.

According to Newton’s second law of motion: an unbalanced force acting on a

body of fixed mass will cause that body to accelerate in the direction of the

unbalanced force. The magnitude of the force is equal to the product of the mass

and the magnitude of the acceleration. The law therefore enables force to be

quantified and is usually expressed by the vector equation

F = ma (5.12)

Force is measured in the SI unit of newtons where 1 newton (1 N) is equal to

1 kg m s−2.

According to Newton’s third law of motion: if body A exerts a force on body B,

then body B exerts a force on body A. These two forces are equal in magnitude,

but point in opposite directions. The law therefore indicates that:

To every action there is an oppositely directed reaction of equal magnitude.

Observers who attempt to apply Newton’s laws in a non-inertial frame (i.e. one

which is itself accelerating) will observe phenomena that indicate the existence of

fictitious forces, such as centrifugal force and Coriolis force. These phenomena

are real but the fictitious forces are not; they appear because of the acceleration of

the observer’s frame of reference relative to an inertial frame. By contrast,

centripetal force is a real force in the sense that it arises in an inertial frame.

From Equation 5.11:

Fcent = mrω2 = mv2/r (5.13)

l A star of mass 1.5 × 1030 kg experiences a centripetal acceleration of

magnitude 0.5 m s−2. What must be the magnitude of the centripetal force

acting upon it?

m From Newton’s second law, the magnitude of the centripetal force is

F = ma = (1.5× 1030 kg)× (0.5 m s−2) = 7.5× 1029 N
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5.2.2 Newton’s law of gravitation

According to Newton’s law of gravitation (or as it is sometimes known Newton’s

law of universal gravitation): every particle of matter attracts every other particle

of matter with a gravitational force, whose magnitude is directly proportional to

the product of the masses of the particles, and inversely proportional to the square

of the distance between them. The law therefore implies that the force on a

particle of mass m2 with position vector r, due to a particle of mass m1 at the

origin will be

F 21 = −Gm1m2

r2
r̂ (5.14)

where G is Newton’s (universal) gravitational constant (6.67× 10−11 N m2 kg−2),

and r̂ = r/r is a unit vector pointing from the origin towards the particle of mass

m2. The magnitude of the force on the first particle due to the second is equal to

the magnitude of the force on the second particle due to the first, i.e.

|F 21| = |F 12| =
Gm1m2

r2
(5.15)

Another of Newton’s contributions to this area is known as Newton’s theorem

which states that the gravitational effect of any spherically symmetric body,

outside its own surface, is identical to that of a single particle, with the same mass

as the body, located at the centre of the body. This means that stars and planets

can, for the purposes of Newton’s law of universal gravitation, be treated like

point particles located at the centre of the original body.

Combining Newton’s law of universal gravitation with ideas about periodic

motion allows us to derive Kepler’s third law for the relationship between the

orbital periods of planets and their mean distance from the Sun, as shown by the

following example.

Worked Example 5.1

A planet of mass m moves in a circular orbit of radius r with uniform
Essential skill:

Deriving Kepler’s third lawangular speed ω about a star of mass M . What is the relationship between

the planet’s orbital period P and its orbital radius r?

Solution

The magnitude of the centripetal acceleration of the planet is a = rω2, so the

planet must be subject to a centripetal force of magnitude F = ma = mrω2.

If this force is supplied by the gravitational attraction of the star, then by

Newton’s law of universal gravitation,

mrω2 =
GMm

r2

For a planet with constant angular speed ω, the orbital period is P = 2π/ω,

so replacing ω in the equation above by 2π/P gives

(2π)2mr

P 2
=
GMm

r2

165



Chapter 5 Physics

Rearranging and cancelling the common terms, this yields

P 2 =
(2π)2r3

GM
(5.16)

This agrees with Kepler’s third law which states that P 2 ∝ r3.

Although Kepler’s laws were derived for the motion of planets around the Sun,

they apply to any body moving under the gravitational force of another body. For

instance they also apply to the motion of binary stars.

Since the period of an orbit is related to the angular speed of the orbiting body by

P = 2π/ω (Equation 5.10), an alternative expression describing the motion of a

body in a so-called Keplerian orbit is

ω =

(
GM

r3

)1/2

(5.17)

Furthermore, since the tangential speed is related to the angular speed by v = rω
(Equation 5.11), yet another expression describing such motion is

v =

(
GM

r

)1/2

(5.18)

5.3 Relativistic motion

The mostly intuitive ideas about describing motion embodied in Newton’s laws

and formulae, such as Equations 5.3 – 5.6, turn out not to be true when the speeds

involved approach the speed of light. In that circumstance, those formulae turn out

to be only approximations to the real situation. For a more accurate description of

nature we must turn to the theory of special relativity derived by Albert Einstein

and published in 1905. Einstein’s theory is based on two postulates:

Einstein’s postulates

Postulate I – The principle of relativity

The laws of physics can be written in the same form in all inertial frames.

Postulate II – The principle of the constancy of the speed of light

The speed of light in a vacuum has the same constant value in all inertial

frames, c = 3.00× 108 m s−1.

These two simple postulates lead to many intriguing and counter-intuitive results.

Amongst these are the fact that the duration of a time interval is a relative quantity.

The rate at which a clock ticks depends on the frame of reference in which it is

measured. This is often paraphrased as ‘moving clocks run slow’. It may be

expressed as

∆T =
∆T0√
1− V 2

c2

(5.19)
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where ∆T is the time interval measured by an observer in one inertial frame of

reference, and ∆T0 is the time interval measured by an observer in another

inertial frame of reference which is moving at speed V relative to the first.

Another result is that length is also a relative quantity. The length of a rod depends

on the frame of reference in which it is measured. This is often paraphrased as

‘moving rods contract in the direction of motion’. It may be expressed as

L = L0

√
1− V 2

c2
(5.20)

where L is the length of the rod measured by an observer in one inertial frame of

reference, and L0 is the length measured by an observer in another inertial frame

of reference which is moving at speed V relative to the first.

Both these results may be understood in terms of the Lorentz transformation

which links the coordinates measured in two inertial frames of reference that are

moving relative to each other.

Consider an inertial frame of reference B which is moving parallel to the x-axis of

an inertial frame of reference A, with a speed V . These two frames of reference

are said to be in ‘standard configuration’. The coordinates in space and time of a

point in frame B (x′, y′, z′, t′) may be expressed in terms of the coordinates of the

same point in frame A (x, y, z, t) as

x′ =
x− V t√
1− V 2

c2

(5.21)

y′ = y (5.22)

z′ = z (5.23)

t′ =
t− V x/c2√

1− V 2

c2

(5.24)

The factor 1/
√

1− V 2/c2 occurs so often in special relativity that it is often

given the symbol γ (gamma) and is referred to as the Lorentz factor. Using this

notation, the Lorentz transformations may be written

x′ = γ(x− V t) (5.25)

y′ = y (5.26)

z′ = z (5.27)

t′ = γ

(
t− V x

c2

)
(5.28)

One of the most dramatic consequences of the relative nature of time is that the

order in which two events occur can, in certain circumstances, depend on the

frame of reference of the observer. However, the ‘cause’ of an event must always

be observed to precede its ‘effect’. This causality will be preserved as long as the

speed of light c is the maximum speed at which a signal can travel.

We can also write down the transformation between the velocity measured in one

frame of reference and another. Using the same definition of inertial frames of

reference A and B as above, it can be shown that

v′x =
vx − V

1− V vx
c2

(5.29)
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where v′x is the x-component of the velocity measured in frame B, and vx is the

x-component of the velocity measured in frame A.

Exercise 5.3 An astronaut sitting in the observation tower of a space station

sees two spaceships X and Y approaching her from opposite directions at high

speed. She measures the approach speed of both X and Y to be 3c/4. What is the

speed of spaceship Y as measured by spaceship X? (Hint: The trick here lies in

describing the situation in terms of standard frames of reference, as described

above.)

n

5.4 Predicting motion

The concepts of work, energy, power and momentum are fundamental in many

areas of physics, and are equally important when it comes to predicting how

objects behave in an astrophysical or cosmological context.

5.4.1 Work, energy, power and momentum

The energy of a system is a measure of its capacity for doing work. The SI unit of

work and of energy is the joule (J), where 1 J = 1 kg m2 s−2 = 1 N m. Power is

defined as the rate at which work is done and energy transferred. The SI unit of

power is the watt (W), where 1 W = 1 J s−1.

The translational kinetic energy of a body of mass m and speed v is

EKE =
1

2
mv2 (5.30)

The work done on any body by a force is the energy transferred to or from that

body by the force. When a non-zero resultant force acts on a body, the work done

by that force is equal to the change in the body’s translational kinetic energy:

W = ∆EKE =
1

2
mv2 − 1

2
mu2 (5.31)

where v and u are the final and initial speeds of the body, respectively.

Exercise 5.4 The speed of a particle of mass 10−6 kg increases from 5 m s−1

to 10 m s−1. How much work is done on the particle in this process?

n

0

Fx

xA B

 dx
                   

work = Fx

A

B

∫

Figure 5.5 The work done by

a force is equal to the area under

a graph of Fx against x.
The work done by a force that varies in strength but always acts along the x-axis

is defined by the following integral

W =

B∫

A

Fx dx (5.32)

which may be interpreted as the area under the graph of Fx against x between

x = A and x = B, as shown in Figure 5.5.
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A conservative force is one where the total work done by the force is zero for any

round trip, or, equivalently, where the work done by the force is independent of

the path connecting the start- and end-points. Other forces, which do not satisfy

this condition, are non-conservative forces.

A potential energy may be associated with each conservative force that acts on a

body or between a system of bodies. The potential energy EPOT associated with

any particular configuration is the work that would be done by the relevant

conservative force in going from that configuration to an agreed ‘reference’

configuration that has been arbitrarily assigned zero potential energy. Because of

the arbitrary nature of this reference configuration, only changes in potential

energy are physically significant.

A particular example, important in astrophysics, is the gravitational potential

energy of an object of mass m at a distance r from the centre of a body of mass

M , which is given by

EGR = −GmM
r

(5.33)

such that EGR = 0 at r = ∞.

l What is the gravitational potential energy of an apple of mass 100 g at the

surface of the Earth? (Assume that the mass and radius of the Earth are

5.97× 1024 kg and 6.38 × 106 m respectively and that the gravitational

constant is G = 6.67 × 10−11 N m2 kg−2.)

m EGR = −(6.67 × 10−11 N m2 kg−2)× (0.1 kg)× (5.97 × 1024 kg)/(6.38 ×
106 m) = 6.24 × 106 N m or 6.24 MJ (megajoules).

Another consequence of Newton’s law of gravity is the fact that every massive

body will possess a certain escape speed. This is the minimum speed an object

must acquire for it to escape completely from the gravitational influence of

another body. If an object has translational kinetic energy EKE = 1
2mv

2 at a

distance r from the centre of a body of mass M , then in order to escape, it must be

the case that EKE + EGR ≥ 0. The limiting case is given by the equality and

defines the escape speed such that 1
2mv

2
esc −GmM/r = 0. Rearranging this

expression, we obtain the escape speed as

vesc = (2GM/r)1/2 (5.34)

l What is the escape speed at the surface of an asteroid whose radius is 10 km

and whose mass is 1015 kg? (G = 6.7 × 10−11 N m2 kg−2).

m Using Equation 5.34

vesc = (2× 6.7× 10−11 N m2 kg−2 × 1015 kg/104 m)1/2 = 3.7 m s−1

or about 4 m s−1.

If the potential energy associated with a particular conservative force (such as

gravity) is a function of the single variable x, then the only non-zero component

of the force will be Fx, and its value at any point will be given by minus the

gradient of the EPOT versus x graph at that point:

Fx = −dEPOT

dx
(5.35)
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A generalization of this to more than one dimension makes use of the nabla

operator introduced in Section 4.8. The vector F is given by

F = −∇EPOT (5.36)

Exercise 5.5 Use Equations 5.33 and 5.35 to derive an expression for the

magnitude of the force of gravity experienced by a body of mass m at a distance r
from the centre of a body of mass M .

n

For systems in which only conservative forces act, the total mechanical energy is

conserved. That is,

∆EPOT +∆EKE = 0

This equation provides the means of linking the speed of a body to its position in

such a system. The principle of conservation of mechanical energy can be

extended to cover all forms of energy, thus leading to the principle of

conservation of energy.

In classical Newtonian mechanics the momentum of a body of mass m and

velocity v is given by

p = mv (5.37)

This leads to an alternative expression of Newton’s second law of motion, namely

that the total force acting on a body is equal to the rate of change of momentum of

the body:

F =
dp

dt
(5.38)

This is a more general statement of Newton’s second law of motion than

F = ma, since the latter only applies to situations in which the mass is constant.

According to the principle of conservation of momentum, the total momentum

of any isolated system is constant. The principle of conservation of momentum

may be used in the solution of a variety of problems. It is commonly used in

the analysis of collision problems, often in association with some aspect of

energy conservation. Collisions in which kinetic energy is conserved are said to

be elastic. Collisions in which kinetic energy is not conserved are said to be

inelastic.

5.4.2 Relativistic mechanics

In high-energy collisions, where collision speeds approach that of light in a

vacuum (c = 3.00 × 108 m s−1), it is necessary to use the relativistic definitions

of momentum and translational kinetic energy, namely

p =
mv√
1− v2

c2

(5.39)

EKE =
mc2√
1− v2

c2

−mc2 (5.40)
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The total relativistic energy is the sum of the relativistic translational kinetic

energy and the mass energy of a body:

ETOT = EKE + EMASS (5.41)

where the mass energy is given by perhaps the most famous equation in all of

physics:

EMASS = mc2 (5.42)

and the total relativistic energy is therefore

ETOT =
mc2√
1− v2

c2

(5.43)

In high-energy collisions particles may be created (implying that mass energy

increases) but total energy must be conserved, so there must be a corresponding

decrease in kinetic energy.

By combining Equations 5.39 – 5.43, it can be seen that a general relationship

between total relativistic energy, momentum and mass energy is

E2
TOT = p2c2 +m2c4 (5.44)

Exercise 5.6 At what speed must a particle travel if its relativistic translational

kinetic energy is equal to its mass energy?

n

5.5 Rotational motion

Many of the ideas of translational motion discussed in earlier sections have

analogues in rotational motion. The first such concept to consider is that of

torque, or the turning effect of a force. Torque is a vector quantity, and the torque

Γ (the upper case Greek letter gamma) about a point O due to a force F is

Γ = r × F (5.45)

where r is the displacement vector from O to the point of application of the force

(see Figure 5.6). The direction of the torque vector is perpendicular to the plane

containing the force and displacement vectors, as given by the right-hand rule.

O

r
F

θ

plane containing
vectors r  and F

Γ

Figure 5.6 The magnitude of the torque Γ
is equal to the product of the magnitude of the

force F , the distance from the axis of rotation

r, and the sine of the angle between these two

vectors. The direction of Γ is perpendicular to

the plane containing the other two vectors,

given by the right-hand rule.
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The rotational analogue of mass is moment of inertia I , which is defined about a

given axis for a system of particles as

I =
∑

i

mir
2
i (5.46)

where ri is the perpendicular distance from the axis to the ith particle, and mi is

the mass of that particle. Note that the moment of inertia of a system depends on

the axis about which it is determined. The moment of inertia I about a given axis

for a rigid body has a similar significance, though its evaluation usually involves a

definite integral rather than a sum. Some results are given in Figure 5.7.

2 21I = 2 M(R1 + R2 )

(a)

cylindrical shell R

(b)

hollow cylinder

solid cylinder
or disc

rectangular plate

a

b

long thin rod

solid sphere thin spherical shell

I  = MR2

R1 R2

R

I = 1
2 MR2

(c) (d)

I = 1
12 M(a2 + b2 )

R
I = 2

5 MR2 I = 2
3 MR2

(g) (h)

long thin rod

I = 1
3 ML2I = 1

12 ML2

LL

R

(e) (f)

Figure 5.7 Moments of inertia about specified axes for some common uniform

solids.

The angular analogue of translational kinetic energy is, not surprisingly, rotational

kinetic energy. For a body rotating with angular speed ω, about a fixed axis
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associated with moment of inertia I , the rotational kinetic energy is given by

Erot =
1

2
Iω2 (5.47)

The rotational analogue of linear momentum is angular momentum. The letter j

is often used for the angular momentum of a particle, and J for the angular

momentum of a system such as a rigid body. It is a vector quantity and defined

such that the angular momentum j about a point O of a particle with linear

momentum p is

j = r × p (5.48)

where r is the displacement vector of the particle from O (see Figure 5.8). The

direction of the angular momentum vector is perpendicular to the plane containing

the linear momentum and displacement vectors, as given by the right-hand rule.

O

r θ

plane containing
vectors r  and p

j

p

Figure 5.8 The magnitude of the angular

momentum j is equal to the product of the

magnitude of the linear momentum p, the

distance from the axis of rotation r and the

sine of the angle between these two vectors.

The direction of j is perpendicular to the

plane containing the other two vectors, given

by the right-hand rule.

For a rotating rigid body, the angular momentum J about a given point depends

on the way the body’s mass is distributed, and on the components of its angular

velocity ω. Although not generally true, for all the situations that you are likely to

come across, J is parallel to ω and

J = Iω (5.49)

The angular momentum J for any object subject to an external torque Γ satisfies

the equation

Γ =
dJ

dt
(5.50)

In situations where J = Iω, and I is a constant, it follows that

Γ = I
dω

dt
(5.51)

where dω/dt is the angular acceleration. This is in effect the rotational analogue

of Newton’s second law of motion.

According to the principle of conservation of angular momentum: for any

system, the total angular momentum about any point remains constant as long as

no net external torque acts on that system.

Exercise 5.7 (a) A truncated accretion disc orbiting around a compact star

may be modelled as an annulus of material of mass M with inner and outer radii

R1 and R2 respectively. Explain qualitatively why the moment of inertia of the

annulus about a central axis is different from that of a uniform disc of material of
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the same mass and radius R2. (b) Assuming an annulus and disc both rotate as

solid bodies, and at the same angular speed as each other, explain which will have

the greater angular momentum and which will have the greater rotational kinetic

energy.

n

5.6 Properties of gases

The physics of matter is generally concerned with the three phases referred to as

solids, liquids and gases. However, in astrophysics and cosmology we are almost

always dealing solely with gases (or with plasmas, which are ionized gases).

The vast number of molecules present in any normal sample of gas means that the

macroscopic properties of the gas can be deduced from the average behaviour of

the molecules. Random fluctuations can be neglected. For instance, the pressure

of a gas, detected on the walls of a container, is due to the ceaseless random

bombardment of gas molecules. The pressure P at any point in a gas is the

magnitude of the perpendicular force per unit area that the gas would exert on a

surface at that point, so

P = F/A (5.52)

The SI unit of pressure is the pascal (Pa), where 1 Pa = 1 N m−2. Another

macroscopic property of a gas is its density which is simply the mass of the

sample divided by its volume. It is usually represented by the symbol ρ. Thus

ρ =M/V (5.53)

where the volume in question is often that of a spherical region and as such is

given by

V =
4

3
πR3 (5.54)

where R is the radius of the sphere.

An important macroscopic property of a gas is its temperature. Energy transferred

from a warm body to a cool body, as a result of a difference in temperature, is

known as heat. Energy transferred by non thermal means is classified as work.

One way of characterizing temperature is to say that it is a label that determines

the direction of heat flow: heat flows from a body with a higher temperature to a

body with a lower temperature, and keeps on flowing until both bodies are at the

same temperature. The lowest conceivable temperature is −273.15 ◦C. This is

known as the absolute zero of temperature. According to classical physics,

molecules stop moving at absolute zero, and have zero kinetic energy. On the

absolute temperature scale, absolute zero is taken to be zero kelvin (0 K), and 0 ◦C

becomes +273.15 K.

The simplest model of a gas treats molecules as structureless particles in random

motion. An ideal gas is one in which the only interactions are elastic collisions

(i.e. kinetic energy is conserved) and other molecular or gravitational interactions

are neglected. Most gases under normal conditions are approximately ideal. In

this model, the molecules collide with one another and with the walls of their
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container, subject to the laws of Newtonian mechanics. As a result, the model

predicts that the pressure exerted by a gas depends on the average translational

energy 〈EKE〉 of the gas molecules:

PV =
2

3
N〈EKE〉 (5.55)

where P is the pressure exerted by the gas, V its volume and N the number of

molecules. The Maxwell–Boltzmann energy distribution can be used to show that

the average translational energy of the particles in a gas is

〈EKE〉 =
3

2
kT (5.56)

where T is the absolute temperature of the gas and k is the Boltzmann constant

(1.38 × 10−23 J K−1). These two equations together lead to the ideal gas

equation of state which links the macroscopic properties of a gas in equilibrium

conditions:

PV = NkT (5.57)

You will also see this equation written in terms of the number density of

molecules in the gas, n. Since n = N/V , clearly,

P = nkT (5.58)

Furthermore, the equation can be written in terms of other macroscopic

parameters of the gas, as illustrated by the following.

l If a gas consists of N atoms, each of mass m, what is the relationship

between the pressure (P ) and density (ρ) of the gas and its temperature (T )?

m The total mass of the gas is Nm and so the density of the gas is ρ = Nm/V .

Equation 5.57 may be rearranged as P = NkT/V , so combining these two

equations we have

P = ρkT/m (5.59)

Exercise 5.8 The photosphere of the Sun contains about 1016 hydrogen atoms

per cubic centimetre at a temperature of 5800 K. (a) What is the average density

of the photosphere? (b) What is the average translational kinetic energy of the

atoms in electronvolts? (c) What is the pressure in the gas? (For the purposes of

this question you may neglect the helium and other atoms present in the Sun’s

photosphere and assume: k = 1.38 × 10−23 J K−1, 1 eV = 1.60 × 10−19 J,

mH = 1.67 × 10−27 kg.)

n

As noted above, although we may quantify the average translational kinetic of

the particles in a gas, in equilibrium, there will be a distribution of speeds of

those particles, and a distribution of their translational kinetic energies. Such

distributions can be represented by histograms, such as those in Figure 5.9, in

which the height of the each bar is the fractional frequency of particles with

speeds or translational kinetic energies in the range of the width of the bar. The

sum of the heights of all the histogram bars is equal to 1.
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Figure 5.9 (Left) Histograms of the distribution of particle speeds in a gas in

equilibrium for different temperatures and particle masses. (Right) Histograms of

the distribution of translational kinetic energies in a gas in equilibrium for

different temperatures and particle masses.

As can be seen in the left-hand panels of Figure 5.9 the speed distribution is

slightly asymmetric, with a tail extending to high speeds. As the temperature

rises, the equilibrium speed distribution becomes broader and shifts to higher

speeds, and the peak of the distribution becomes less pronounced (compare panels

(a) and (b) of the left-hand Figure 5.9). In fact the average speed is proportional to

the square root of the absolute temperature. Also, as the particle mass decreases,
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the equilibrium speed distribution becomes broader and shifts to higher speeds,

and the peak of the distribution becomes less pronounced (compare panels (a) and

(c) of the left-hand Figure 5.9). In more detail, the average speed is inversely

proportional to the square root of the particle mass. (Note: Particle masses are

given in units of atomic mass units (amu).) The distribution of particle speeds is

quantified by the Maxwell–Boltzmann speed distribution function as

f(v) = 4π
( m

2πkT

)3/2
v2 exp

(
−mv

2

2kT

)
(5.60)

Similarly, as can be seen in the right-hand panels of Figure 5.9, the translational

kinetic energy distribution is very asymmetric, with a long tail extending to

high energies. As temperature increases, the equilibrium energy distribution

becomes broader and shifts to higher energies, and the peak of the distribution

becomes less pronounced (compare panels (a) and (b) of the right-hand

Figure 5.9). In fact the average energy is proportional to the absolute temperature.

However, the equilibrium energy distribution is independent of particle mass:

at a fixed temperature, all gases have the same equilibrium distribution

of translational kinetic energy (compare panels (a) and (c) of the right-hand

Figure 5.9). The distribution of translational kinetic energies is quantified by the

Maxwell–Boltzmann energy distribution function as

g(E) =
2√
π

(
1

kT

)3/2 √
E exp

(
− E

kT

)
(5.61)

A final property of gases that it is important to consider is their ability to act as a

medium in which sound waves can travel. A sound wave is a longitudinal

variation in pressure and density consisting of periodic compressions and

rarefactions of the gas, as shown in Figure 5.10.
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(a)

(d)

Figure 5.10 Sound waves (a)

are analogous to longitudinal

waves on a spring (b). A

sound wave can be represented

graphically by plotting the

variation of (c) the gas pressure

or (d) the gas density against

position.

A sound wave, like any wave, may be characterized by its wavelength and

frequency (see Section 5.10) and by its speed of propagation. Although sound

waves are most familiar to us as a means of communication (usually in air)
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they can and do exist in any gas (or plasma) and are generated in a variety of

astrophysical and cosmological contexts. In general, the sound speed in a

particular medium, denoted by the symbol cs, depends on the ratio of the pressure

to the density of the gas, or equivalently on the temperature of the gas (since

P/ρ ∝ T , see Equation 5.59):

cs ∝ (P/ρ)1/2 ∝ T 1/2 (5.62)

5.7 Atoms and energy levels

Although there are significant amounts of dark matter in the Universe, whose

nature is at present largely unknown, the structures that we can observe directly

(planets, stars, galaxies, clusters, etc.) are composed of atoms, and there are

known to be around ninety different types of atom that occur naturally in the

Universe. A material made of a single type of atom is known as an element. The

most abundant elements in the Universe as a whole are those comprising the two

simplest atoms: hydrogen and helium. Here on Earth, there are also significant

amounts of other elements, in particular carbon, nitrogen, oxygen, sodium,

magnesium, aluminium, silicon, sulfur, calcium and iron. This section describes

the basic properties of atoms and energy levels, whilst the subsequent section

describes the quantum physics that underlies these properties.

5.7.1 Atomic structure

Whatever the type of atom, each one has certain characteristic features. Each

contains a central nucleus, which carries a positive electric charge as well as most

of the atom’s mass. The nucleus is surrounded by one or more negatively charged

electrons (symbol: e) each of which has a much lower mass than the nucleus. The

nucleus of an atom is what determines the type of element. The very simplest

atoms of all, those of the element hydrogen, have a nucleus consisting of just a

single proton (symbol: p). The next simplest atom, helium, has two protons in its

nucleus; lithium has three protons; beryllium has four; boron has five; carbon has

six; and so on. The number of protons in the nucleus of an atom is known as

its atomic number (Z). The Periodic Table of the elements is displayed in

Figure 5.11 where the atomic number and chemical symbol are shown for each

element.

The electric charge of a proton is represented by the algebraic quantity +e with a

numerical value of 1.60 × 10−19 C. The electric charge of an electron is exactly

the same magnitude as that of a proton, but negative instead of positive, so is

written as −e, which has a value of −1.60× 10−19 C.

l What is the atomic number of carbon? What is the electric charge of a carbon

nucleus?

m The nucleus of a carbon atom contains six protons, so the atomic number of

carbon is 6 and the charge of the nucleus is +6e, which is equivalent to

6× (1.60 × 10−19 C) = 9.60 × 10−19 C. To the nearest order of magnitude,

this is therefore 10−18 C.
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Figure 5.11 The Periodic Table showing the atomic number and chemical

symbol for each element.

The other constituents of atomic nuclei are neutrons (symbol: n) which have a

similar mass to protons, but have zero electric charge. Normal hydrogen atoms

have no neutrons in their nuclei, although there is a form of hydrogen known as

deuterium that does. The nucleus of a deuterium atom consists of a proton and a

neutron. It is still the element hydrogen (since it contains one proton) but it is a

heavy form of hydrogen, thanks to the extra neutron. Deuterium is said to be an

isotope of hydrogen. Similarly, normal helium atoms contain two neutrons in their

nucleus, along with the two protons; but a lighter isotope of helium, known as

helium-3, contains only one neutron instead. The total number of protons and

neutrons in the nucleus of an atom is the mass number (A) of the atom. Isotopes

therefore denote forms of the same element with different mass numbers. The

nucleus of a particular isotope is referred to as a nuclide.

As a shorthand, isotopes of each atomic element may be represented by a symbol.

Letters are used to indicate the name of the element itself, and two numbers are

used to indicate the atomic number (lower prefix) and mass number (upper

prefix). So a normal hydrogen atom is represented as 1
1H, and an atom of the

heavier isotope, deuterium, by 2
1H. When an isotope is written ‘element-X’, for

example helium-3, then the value of X is always the mass number A.

l What are the mass numbers of (a) normal hydrogen (b) heavy hydrogen (i.e.

deuterium) (c) normal helium and (d) helium-3 ?

m (a) The nucleus of normal hydrogen contains one proton, so the mass number

is 1. (b) The nucleus of heavy hydrogen contains one proton and one neutron

so the mass number is 2. (c) The nucleus of normal helium contains two

protons and two neutrons, so the mass number is 4. (d) The nucleus of

helium-3 contains two protons and one neutron, so the mass number is 3.

l What is the symbol for the isotope of carbon which has six protons and eight

neutrons in its nucleus?
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m
14
6C.

l How many protons and how many neutrons does a nucleus of the uranium

isotope 238
92U contain?

m 92 protons and (238 − 92) = 146 neutrons.

Sometimes, protons and neutrons are collectively referred to as nucleons since

both types of particle are found inside the nucleus of an atom. Similarly, electrons,

protons and neutrons are often collectively referred to as sub-atomic particles, for

obvious reasons.

Normal atoms are electrically neutral, so the positive electric charge of the

nucleus is exactly balanced by the negative electric charge of the electrons

surrounding it. Since each electron carries an electric charge of −e and each

proton carries an electric charge of +e, the number of electrons in a neutral atom

is exactly the same as the number of protons in its nucleus.

l What is the difference between atoms of lithium-7 and beryllium-7?

m Both atoms have the same mass number, namely 7. However, the nucleus of

the lithium atom has 3 protons and 4 neutrons, whilst the nucleus of the

beryllium atom has 4 protons and 3 neutrons. Furthermore, the lithium atom

contains 3 electrons whilst the beryllium atom contains 4 electrons.

l The element iron has an atomic number 26, and its most common isotope is

known as iron-56. (a) How many protons and how many neutrons are there in

a single nucleus of iron-56? (b) How many electrons are there in an

electrically neutral atom of iron-56?

m (a) Since the atomic number is 26, the nucleus contains 26 protons. Since the

mass number is 56, the total number of protons and neutrons in the nucleus is

56, and so the nucleus contains 56− 26 = 30 neutrons. (b) An electrically

neutral atom contains the same number of electrons as protons, so the atom

contains 26 electrons.

Finally, here is a reminder of the size of atoms and nuclei. Whereas a typical

atomic nucleus has a size of around 10−14 m, the size of the atom itself is

determined by the size of the region occupied by the electrons that surround the

nucleus. The overall size of an atom is about 10−10 m across.

5.7.2 Photons and energy levels

Each type of atom can be characterized by the energies of the photons it can

absorb or emit. In this section we look deeper into the structure of atoms and

show how atoms absorb and emit characteristic energies. As noted earlier,

the explanation for this, in terms of quantum mechanics, is examined in the

subsequent section.

A photon is a ‘particle’ of electromagnetic radiation. Monochromatic light,

which has a single colour, consists of identical photons that each have exactly

the same energy. The amount of energy carried by a single photon is called a

quantum and quanta of visible light have energies of around 2 to 3 eV. The

energy corresponding to each colour is shown in Figure 5.12.
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Figure 5.12 A continuous

spectrum of visible light

showing the corresponding

photon energy for each colour.

When the photons emitted by a particular type of atom are dispersed to form a

spectrum, the spectral lines of atomic spectra provide a unique ‘fingerprint’ of the

atoms concerned (Figure 5.13). The explanation for atomic spectra is that atoms

can only exist with certain values of energy, known as energy levels. Transitions,

often referred to as quantum jumps, can occur between these energy levels. When

an atom has its lowest possible energy, it is said to be in its ground state, whilst

higher energy levels correspond to excited states of the atom. To make atoms

jump to excited states, photons of the correct energies must be supplied, and the

result is the absorption of a photon (Figure 5.14a). When an atom jumps from

one energy level to another of lower energy, the energy that it loses is taken away

by a photon, and the result is the emission of a photon (Figure 5.14b). In general,

the energy of the photon is equal to the change in energy of the atom:

Eph = ∆Eatom (5.63)

hydrogen
H

helium
He

mercury
Hg

cadmium
Cd

zinc
Zn

Figure 5.13 Each type of atom may be characterized by a unique spectrum of

emission lines, some examples of which are shown here in the visible part of the

spectrum.
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Figure 5.14 The two horizontal lines in each part of this figure represent

two of the possible energies of an atom – two of the possible energy levels,

labelled Ehi and Elo. When the atom occupies an energy level, the energy level is

marked with a dot. (The widths of the horizontal lines in this diagram are of no

significance.) (a) When a photon is absorbed by an atom, the atom makes a

transition from a lower energy level to a higher energy level. (b) A photon is

emitted by an atom when the atom makes a transition from a higher energy level

to a lower energy level.
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Figure 5.15 The energy-level diagram of hydrogen showing various series of

transitions.
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Hydrogen is the simplest type of atom, consisting as it does of a single electron

bound to a single proton. As you might expect, it therefore has the simplest

energy-level diagram of any element (Figure 5.15). This consists of a series of

levels which get progressively closer together at higher and higher energies. The

energy En associated with the nth energy level of hydrogen is given by

En =
−13.60

n2
eV (5.64)

Consequently, the energy of the ground state (n = 1) is −13.60 eV whilst higher

energy levels have larger (i.e. less negative) energies, until the energy level

identified as n = ∞ has an energy of 0 eV. Series of transitions whose lowest

energy level corresponds to a particular value of n have been given names

according to the scientists who first observed them, as shown in Figure 5.15.

Exercise 5.9 Use the information presented in Figure 5.15 to calculate the

photon energies corresponding to the first four lines in the hydrogen Balmer

series.

n

If a hydrogen atom in its ground state absorbs a photon whose energy is greater

than 13.60 eV, the atom will find itself in the continuum region shown at the top

of Figure 5.15. In this state the atom is ionized, that is, the electron and proton

which comprised the hydrogen atom will no longer be bound together. In effect,

13.60 eV of the photon’s energy has been used to split the electron and proton

apart, and any remaining amount of the photon’s energy is imparted to the now

free particles as kinetic energy. The ionization energy of a hydrogen atom is

therefore 13.60 eV.

Different elements have different energy-level diagrams and different ionization

energies. Furthermore, since all other elements possess more than one electron

when neutral (helium has two electrons, lithium has three electrons, etc.) atoms of

other elements can undergo successive ionizations as successive electrons are

removed. A nomenclature used in astrophysics is that neutral hydrogen is denoted

by HI, and ionized hydrogen by HII. Similarly, neutral helium is HeI, singly

ionized helium is HeII, etc.

l What do you suppose is implied by the notation CIV?

m This is triply-ionized carbon, i.e. carbon from which three electrons have

been removed.

If an atom has all but one of its electrons removed, as a result of ionization

processes, it is referred to as a hydrogen-like ion. The energy levels of a

hydrogen-like ion with nuclear charge Ze are given by

En = Z2 × −13.60

n2
eV (5.65)

which differs from Equation 5.64 (the corresponding equation for the hydrogen

atom) only by the factor of Z2, where Z is the atomic number of the ion in

question. Since Z = 1 for the hydrogen atom, the two equations are identical in

that case, so Equation 5.65 is really just a generalisation of Equation 5.64.
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The normal state of an atom is for it to sit in its ground state, which is the state of

lowest possible energy for that atom. However, atoms in a gas will tend to occupy

different states. The Boltzmann equation predicts the number of atoms Nn in a

particular energy level (with energy En) relative to the number of atoms N1 in the

ground state (with energy E1) for a gas at a temperature T :

Nn

N1
=
gn
g1

exp

(
−(En − E1)

kT

)
(5.66)

The constants gn and g1 are weighting factors and k is Boltzmann’s constant.

Similarly, the Saha ionization equation predicts the number of ions N+ relative to

the number of neutral atoms N1 in the ground state for a sample of gas at a

temperature T :

N+

N1
=

(
2πme

h2

)3/2 (kT )3/2

Ne
exp

(
− I

kT

)
(5.67)

The number of free electrons is Ne and I is the ionization energy. Other quantities

are all constants denoted by their usual symbols.

5.8 Quantum physics

The ideas of quantum physics are only required when we try to understand

phenomena on an atomic scale. Since, in astrophysics and cosmology we are

concerned with the microphysics of the interaction of matter and radiation within

stars and galaxies, at the fundamental level we are indeed examining processes on

an atomic scale, and so require aspects of quantum physics in order to understand

what is going on. For the purposes of this document, we merely remind you of a

few results from quantum physics, so that you can proceed to tackle further topics

in astrophysics and cosmology where an application of these results is important.

Vital to quantum physics is an appreciation that, in order to interpret the behaviour

of particles such as electrons, it is necessary to apply both wave and particle

models. The two different models are required to explain different aspects of their

behaviour: for example, broadly speaking, electrons propagate like waves but

are absorbed or emitted like particles. In particular, any particle will have an

associated wavelength, known as its de Broglie wavelength, given by

λdB = h/p (5.68)

where h is Planck’s constant (6.63 × 10−34 J s) and p is the magnitude of the

particle’s momentum.

l What is the de Broglie wavelength of a proton moving at a speed of

500 km s−1, a typical speed for a proton in the core of the Sun?

(mp = 1.67 × 10−27 kg)

m The magnitude of the proton’s momentum is

p = mv = (1.67×10−27 kg)×(500×103 m s−1) = 8.35×10−22 kg m s−1

so its de Broglie wavelength is

λdB = h/p = (6.63×10−34 J s)/(8.35×10−22 kg m s−1) = 7.94×10−13 m
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5.8.1 Wave mechanics

As just noted, in order to interpret the behaviour of particles such as electrons, it is

necessary to apply both wave and particle models. The two different models are

required to explain different aspects of their behaviour. In experiments involving

just a single electron, it is impossible to predict the outcome of that experiment,

only the probability of the various possible outcomes can be predicted. The

probability P of detecting a particle at a particular place is proportional to the

square of the amplitude A of the particle’s de Broglie wave at that place, P ∝ A2.

Quantum mechanics asserts that the behaviour of matter can be modelled using

probability waves. A localized particle can be modelled as a wavepacket which

can be produced by summing many infinitely long waves with a range of

wavelengths and amplitudes. The range of wavelengths required to build up a

localized particle implies an uncertainty in our knowledge of the particle’s

momentum. The more tightly localized a particle is, the greater is this uncertainty.

This idea leads to Heisenberg’s uncertainty principle, which has two

formulations:

∆x∆px ≥ ~/2 (5.69)

and

∆E∆t ≥ ~/2 (5.70)

where ~ = h/2π.

Exercise 5.10 An electron in an excited atom typically remains in an

excited state for about 10−8 s before it loses the excess energy by emitting

electromagnetic radiation. Use the energytime uncertainty relationship to estimate

the indeterminacy that this implies for the energy of the excited atomic states.

In physical terms, what effect do you think this indeterminacy will have on

measurements of spectral lines?

n

According to Schrödinger’s wave-mechanical approach to quantum mechanics,

the information describing the behaviour of a particle is contained in its

wavefunction Ψ, which is the solution to the time-dependent Schrödinger

equation for that particle. The solution to Schrödinger’s equation for a free

particle of mass m involves travelling waves characterized by an angular

wavenumber k(= 2π/λdB) that may have any positive value. The relationship

between k and the particle’s kinetic energy is

Ekin =
~
2k2

2m
(5.71)

So, for a free particle, any positive value of the kinetic energy (and hence total

energy) is allowed.

For a particle of mass m in a stationary state, described by a wavefunction of the

form Ψ(x, t) = ψ(x)φ(t), the time-independent wavefunction ψ(x) will satisfy

the time-independent Schrödinger equation:

d2ψ(x)

dx2
+

2m

~2

(
Etot − Epot(x)

)
ψ(x) = 0 (5.72)

where Epot is the potential energy function of the particle.
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For a particle in a one-dimensional infinite square well of width D (Figure 5.16),

the time-independent wavefunctions take the form ψ(x) = ψ0 sin kx and

ψ(x) = ψ0 cos kx, but only certain values of k are allowed, and therefore only

certain discrete values of the energy are allowed. That is, the particle’s energy is

quantized:

Etot =
n2h2

8mD2
(5.73)

where n = 1, 2, 3, etc.

Figure 5.16 (a) Two of the standing probability waves, ψn=1 and ψn=5, that

can describe the particle in a one-dimensional infinite square well. (b) The relative

probability of detecting the particle in different regions, when the particle is

described by the standing probability waves ψn=1 and ψn=5.

Exercise 5.11 An electron is confined between infinitely high, rigid walls

positioned at locations ±D/2 on the x-axis.

(a) Describe the time-independent wavefunction that describes the electron when

it has a total energy of Etot = 9h2/(8meD
2).

(b) Describe the positions where the electron is most likely to be detected when it

has a total energy of Etot = 9h2/(8meD
2).

(c) What would happen if the electron made a transition from the energy level

Etot = 9h2/(8meD
2) to the energy level Etot = h2/(8meD

2).

n

In a finite one-dimensional square well the particle’s energy is still quantized but

the wavefunction penetrates to some extent into the classically forbidden region

outside the well where Epot > Etot (Figure 5.17). This means, of course, that

there is a finite probability of finding the particle in this region.
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Figure 5.17 Sketches of the lowest energy time-independent wavefunction for

a particle confined in a potential well of various heights. The wavefunction

penetrates further into the classically forbidden region in a potential well of lower

height. The dashed line indicates the energy of the ground state (state of lowest

energy) in each case.

Conversely if the particle’s energy is greater than the height of the walls of the

well, Etot > W , then the particle is unbound and the solutions are travelling

waves. In each region separately, the wavefunction has an angular wavenumber

given by
√

2m(Etot − Epot)/~.

One extraordinary consequence of the penetration into regions outside finite wells

is that if the potential energy function is not just a well but a barrier of finite

width and height, then the wavefunction can still have a finite value on the outside

of the barrier. We can interpret this as meaning that there is a finite probability of

the particle escaping from its confinement even though its total energy Etot is

nowhere near enough (in classical terms) for it to surmount the potential energy

barrier of height W . This phenomenon is known as barrier penetration or

tunnelling and has many important applications in physics. In the classically

forbidden region within the barrier, the wavefunction decays exponentially at a

rate which will depend on W − Etot. So for walls much higher than Etot or walls

which are wide, the wavefunction will have decayed to a smaller value than for

lower or narrower walls. In all cases (wells and barriers) also note that the

continuity requirements are met at all the boundaries: the wavefunction and its

first derivative (slope) match (i.e. they are continuous) at all points.

A summary of these results for Schrödinger’s time-independent equation in one

dimension is provided in Figure 5.18.
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Figure 5.18 A summary of results for Schrödinger’s time-independent

equation in one dimension.

The probability P of finding a confined particle in a small region ∆x at position x
in a one-dimensional well is P = |ψ(x)|2∆x, if the time-independent

wavefunction ψ(x) is normalized. More generally, for particles described

by a normalized time-dependent wavefunction Ψ(x, t), the probability is

P (x, t) = |Ψ(x, t)|2 ∆x. For a particle confined in three dimensions the energy

levels are given by

Etot =
h2

8mD2

(
n21 + n22 + n23

)
(5.74)

where n1, n2 and n3 are positive integers. This leads to the phenomenon of

degeneracy, where different combinations of the three quantum numbers n1, n2
and n3 can lead to the same value for the energy, Etot.

5.8.2 Quantum mechanics in atoms

The electron in the hydrogen atom is subject to the Coulomb interaction with the

proton in the nucleus and it is the electrostatic potential energy associated with
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this interaction (−e2/4πε0r) that is inserted into the Schrödinger equation for the

electron in hydrogen. Because of the spherical symmetry of the hydrogen atom,

the wavefunctions are most conveniently expressed in spherical polar coordinates

(r, θ, φ). Each stationary state wavefunction ψ(r, θ, φ) can be written as the

product of three wavefunctions that each depend on only one of the coordinates

(r, θ, φ). That is ψ(r, θ, φ) = ψ1(r)× ψ2(θ)× ψ3(φ).

When the electron is confined within the hydrogen atom (i.e. when it has Etot < 0)

the solutions to Schrödinger’s equation are stationary state wavefunctions each of

which has a definite energy. The energy levels of the hydrogen atom are given by

Etot = − 1

n2

(
mee

4

8h2ε20

)
= −13.6

n2
eV (5.75)

(where n = 1, 2, 3, ... etc). There is also a continuum of positive energy states

available to the electron. These correspond to the states of an ionized hydrogen

atom.

Three quantum numbers n, l and ml are required to specify the wavefunction of

the electron in hydrogen according to Schrödinger’s equation. The principal

quantum number n is chiefly responsible for determining the energy of the

electron. It can take any integer value. The orbital angular momentum quantum

number l determines the magnitude of the electron’s orbital angular momentum L
according to

L =
√
l(l + 1)~ (5.76)

where l = 0, 1, 2, ..., n − 1. The orbital magnetic quantum number ml

determines the component of the electron angular momentum along an

arbitrarily chosen z-axis, according to Lz = ml~ where ml can take the values

ml = 0,±1,±2, ...,±l. In the absence of a magnetic field, the energy levels of

the electron in hydrogen are degenerate. That is, states with the same value of n
but different values of l and ml have the same energy.

l The electron in a hydrogen atom is described by a wavefunction that is

characterized by the principal quantum number n = 3. What are the possible

values of the magnitude L of the electrons angular momentum?

m The possible values of the electron’s orbital angular momentum quantum

number are l = 0, l = 1 and l = 2. So the possible values of the magnitude of

the electron’s orbital angular momentum are L = 0, L =
√
2~ and L =

√
6~.

When a magnetic field is applied, the energy levels of hydrogen are split due to a

magnetic energy term Emag that depends on ml, namely

Emag = ml

(
e~

2me

)
Bext (5.77)

The spatial distribution of the electron in hydrogen is often illustrated using the

electron cloud picture, which represents the probability density |ψ(r, θ, φ)|2 by

the density of a pattern of dots (see Figure 5.19). All states with l = 0 are

spherically symmetric, whilst those with l ≥ 1 have distributions that depend on

θ. However, |ψ3(φ)|2 is constant for all states. For spherically symmetric s states

the radial probability density 4πr2 |ψ|2 is the probability per unit radial distance

of finding the particle at radius r.

189



Chapter 5 Physics

Figure 5.19 The radial wavefunctions, radial probability densities and electron

cloud pictures for (a) the 2s and (b) the 3s states in hydrogen. Note that the scales

of the electron cloud pictures are close to but not exactly the same as the scales for

the graphs.

Atoms can make transitions between energy levels by absorbing or emitting

photons of light of an appropriate energy. These radiative transitions are governed

by selection rules, in particular, they must obey ∆l = ±1 and ∆ml = 0 or ±1.

Collisional transitions are not subject to the same selection rules.

The electron has an intrinsic angular momentum called spin which has magnitude

S, and which is determined by its spin angular momentum quantum number s,
such that

S =
√
s(s+ 1)~ (5.78)

The quantum number s can take only one value: 1/2. The z-component of the

electron’s spin relative to an arbitrarily defined z-axis is determined by the spin

magnetic quantum number ms such that Sz = ms~ The quantum number ms has

only two possible values: +1/2 and −1/2.

Schrödinger’s equation can be applied to many-electron atoms but it is much more

difficult to find the potential energy function. Nevertheless, the stationary states in

heavy atoms can be specified by the same quantum numbers (n, l, ml and ms) as

for the electron in a hydrogen atom. Since electrons are fermions and obey the

Pauli exclusion principle, no two electrons in an atom can have the same set of

four quantum numbers. This means that they must occupy the available quantum

states, filling from the lowest energy upwards and obeying Hunds rule. This states

that, in the ground state of an atom, the total spin of the electrons always has its

maximum possible value. This ordering in the filling up of available states gives

rise to the Periodic Table of the elements.
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5.9 Quantum physics of matter

In this section we summarise some results of the quantum physics of matter,

focussing first on quantum gases (both bosons – like photons, and fermions – like

electrons), before moving onto nuclear physics and particle physics.

5.9.1 Quantum gases

The translational energy of a molecule of mass m confined to a cubical container

of side length L is quantized. The allowed energies of the translational quantum

states are given by

E =
h2

8mL2
(n21 + n22 + n23) (5.79)

where the quantum numbers n1, n2 and n3 can be any positive integers. Each

ordered set of three quantum numbers defines a translational quantum state. Most

of the allowed energies are degenerate and the quantum states become more

closely packed with increasing E.

The classical continuum approximation applies when the typical spacing between

energy levels is small compared with kT , i.e. h2/8mL2 ≪ kT or λdB ≪ L. The

energy distribution of the translational quantum states is described by the density

of states function D(E) = B
√
E where B = 2πV (2m)3/2/h3. The number of

quantum states with energies in the range E to E +∆E is D(E)∆E.

The distribution of distinguishable particles amongst the allowed quantum

states is given by Boltzmanns law which tells us that the average number

of particles occupying a single quantum state of energy E is given by

F (E) = NA exp(−E/kT ) where N is the total number of particles, A is a

constant, and the factor exp(−E/kT ) is called the Boltzmann factor. We call

F (E) the Boltzmann occupation factor. The Maxwell–Boltzmann energy

distribution, G(E), is the product of the density of states and the Boltzmann

occupation factor: G(E) = B
√
E ×NA exp(−E/kT ) (see Figure 5.20). A

configuration of a gas of distinguishable particles is a particular arrangement of

the particles among their allowed quantum states. In thermal equilibrium all

configurations are equally likely. Figure 5.20 The

Maxwell-Boltzmann distribution

G(E) is the product of two

energy-dependent factors, one

proportional to exp(−E/kT )
and the other proportional to√
E.

Boltzmann’s law can be traced back to three fundamental assumptions: (i) the law

of conservation of energy; (ii) the idea that all configurations are equally likely;

(iii) the idea that the particles are distinguishable from one another.

In quantum mechanics, identical particles cannot be distinguished from one

another. The indistinguishability of identical particles invalidates Boltzmann’s law

and requires a revision of the definition of a configuration. A configuration of

identical particles in quantum mechanics is defined by giving the numbers of

particles in each quantum state. Every particle in physics is either a boson or a

fermion. Identical fermions obey the Pauli exclusion principle, and so only one

fermion can occupy any quantum state. Bosons do not obey the exclusion

principle and so any number of bosons can occupy any quantum state. A

composite particle is a fermion if it contains an odd number of fermions, or a

boson if it contains an even number of fermions.
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l A hypothetical gas contains three particles. Assume that each particle has

three quantum states of energies 0 J, ε and 2ε. Suppose the total energy of the

gas is fixed at ET = 3ε. What is the probability of finding all three particles in

the same quantum state if the particles are (a) distinguishable, (b) identical

bosons, (c) identical fermions?

m (a) If the particles are distinguishable, they can be labelled A, B and C. There

are seven configurations with total energy ET = 3ε: six of these have one

particle in each quantum state (so that ET = 0 + ε+ 2ε in each case) and one

of these has all three particles in the same state (i.e. the middle one, so that

ET = 3× ε). Since all seven configurations are equally likely, the probability

of finding all three particles in the same state is 1/7.

(b) If the particles are identical bosons, they cannot be labelled so there are

only two configurations with energy 3ε: one in which there is one particle in

each state, and one in which all three particles are in the middle state. Each of

these configurations is equally likely so the probability of finding all three

particles in the same state is 1/2.

(c) There is no possibility of finding three identical fermions in the same state

because this would contravene the Pauli exclusion principle.

The average number of identical bosons in a single quantum state of energy E is

given by the Bose occupation factor. The Bose occupation factor for photons is

FB =
1

exp(E/kT )− 1
(5.80)

The Bose occupation factor expresses the fact that bosons have a tendency to

congregate together in the low-energy quantum states (bosons are sociable). The

average number of identical fermions in a single quantum state of energy E is

given by the Fermi occupation factor,

FF =
1

exp((E − EF)/kT ) + 1
(5.81)

where EF is the Fermi energy.

Figure 5.21 The average number of particles in a quantum state of energy E
at temperature T : (a) the Boltzmann occupation factor F (E), (b) the Bose

occupation factor FB(E) and (c) the Fermi occupation factor FF(E).

The Fermi occupation factor is the embodiment of the exclusion principle. At

T = 0 K, FF(E) = 1 for E less than EF and FF(E) = 0 for E greater than EF.

This shows that, at T = 0 K, states of energy up to the Fermi energy are all

occupied and those above are all empty. At higher temperatures the fall-off of
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FF(E) at the Fermi energy EF is less abrupt and occurs over an energy range of

a few kT , showing that a few electrons just below EF have been excited to

empty states just above EF. The effects of indistinguishability and the exclusion

principle can be neglected when the quantum states are sparsely occupied. The

criterion for this is

N ≪ V

3π2

(
8mπ2kT

h2

)3/2

(5.82)

or λdB ≪ d. Here λdB is the typical de Broglie wavelength and d is the typical

distance between molecules. This criterion is satisfied for gases of molecules

under normal conditions, but is not satisfied for gases of photons or electrons.

Thermal radiation (also called blackbody radiation or cavity radiation) is

radiation that is in thermal equilibrium with matter at a fixed temperature T . A

clean-cut example of thermal radiation is the radiation inside a cavity, for example

an oven. Photons are bosons and so the photons of thermal radiation can be

treated as a boson gas. The energy distribution law for photons, called Planck’s

radiation law, has the form Gp(E) = Dp(E) × FB(E) where Dp(E) is the

density of states for photons and FB(E) is the Bose occupation factor. Thus

Planck’s radiation law is

Gp(E) = CE2 × 1

exp(E/kT )− 1
(5.83)

Here C = 8πV/h3c3 = (3.206 × 1075 J−3 m−3)V and V is the volume of the

cavity.

The number of photons of thermal radiation in a volume V and at

a temperature T is (to two significant figures) N = 2.4C(kT )3

= (2.0 × 107 m−3 K−3)V T 3. The energy of thermal radiation is

U = (π4/15)C(kT )4 = (7.5 × 10−16 J m−3 K−4)V T 4. The pressure of thermal

radiation is P = U/3V .

Pauli’s quantum theory of the electron gas recognizes that electrons are

fermions and therefore obey the exclusion principle. The energy distribution

function for the electron gas, called Pauli’s distribution, has the form

Ge(E) = De(E)× FF(E). Here De(E) is the density of states for free electrons

and FF(E) is the Fermi occupation factor. Thus Pauli’s distribution is

Ge = B′
√
E × 1

exp((E − EF)/kT ) + 1
(5.84)

where B′ = 4πV (2me)
3/2/h3. The Fermi energy EF is found by equating the

total number of electrons N to the total number of electron states up to EF, at

T = 0 K. The result is

EF =
h2

8me

(
3n

π

)2/3

(5.85)

where n is the number density n = N/V . The total translational energy of the

electron gas at T = 0 K is U = 3
5NEF and the pressure of the electron gas at

T = 0 K is P = 2
5nEF.

The electron energy distribution changes very little with temperature since only

those electrons with energies within a few kT of EF can be excited into empty
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states above EF. For this reason the above values of EF, U and P , which are

calculated for T = 0 K, remain good approximations at higher temperatures. The

free electrons contribute only slightly to the heat capacities of metals for the same

reason. Another example of a Fermi gas is a neutron star where the neutron

pressure prevents the star from collapsing.

As you have seen, the Pauli exclusion principle asserts that for certain particles

(i.e. fermions such as electrons, protons or neutrons) no two particles of the same

type in a system can occupy the same quantum state (i.e. they must have different

combinations of quantum numbers). Since different quantum states will in

general correspond to different energies, this means that there is a maximum

allowed density of such particles corresponding to any given energy. Under

normal conditions inside stars this is not a problem: for instance in a star like

the Sun, the number of electrons per unit volume, distributed according to

Maxwell–Boltzmann energy distribution, is less than the limit set by the Pauli

exclusion principle at all energies. As the number density increases though, the

Maxwell–Boltzmann energy distribution would normally constrain a large number

of particles to relatively low energies. At a given number density, decreasing the

temperature will also normally mean that more particles have relatively low

energies (recall Figure 5.9). However, the Pauli exclusion principle sets an

upper limit on the number of quantum states available at these low energies and

consequently a large number of electrons are forced into higher energy states than

they would otherwise occupy, simply because there are not enough low-energy

states available. When the majority of electrons are forced into these high-energy

states, the gas of electrons is said to be degenerate and exerts a new form of

pressure known as degeneracy pressure. An equivalent way of visualizing the

situation in a degenerate gas is that the de Broglie wavelength of the particles is

larger than their separation, that is to say the particles ‘overlap’. White dwarfs and

neutron stars are essentially composed of degenerate gases of electrons and

neutrons respectively and the bizarre behaviour these stars display is partly due to

the conditions imposed by the results of quantum physics.

5.9.2 Nuclear physics

Nuclei of atoms are formed of two building blocks: neutrons and protons,

and these are referred to collectively as nucleons. As noted earlier, protons

carry a single unit of positive charge (e = 1.60 × 10−19 C), whilst neutrons

have zero charge. The masses of the two types of particle are similar, with the

neutron being slightly more massive than the proton: mp = 1.6726 × 10−27 kg,

mn = 1.6749 × 10−27 kg.

An atomic nucleus is composed of Z protons and N neutrons held together by the

strong nuclear force in a region of radius r ≈ (1.21 fm)A1/3 where the mass

number A = Z +N . The atomic number Z specifies the particular chemical

element and is also equal to the number of electrons in the neutral atom. A

particular nuclear species is specified by a symbol A
ZXN , or in the non-redundant

form AX, where X denotes the chemical symbol of the element.

One aim of this section is to show you how atoms can transform from one type to

another as a result of radioactive decays or nuclear fusion processes. Figure 5.22

shows a chart of the various isotopes of each element, colour-coded according to
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their principle mode of decay.

20

40

60

80

100

0 20 40 60 80 100 120 140

Z

N

stable

EC

β+
β −

α

Figure 5.22 The isotopes of

each element plotted on a chart

of number of protons Z versus

number of neutrons N . Stable

nuclei are indicated by black

squares, nuclei which undergo

α-decay by green squares, and

nuclei which undergo β−-decay,

β+-decay, and electron capture

by blue, pink and red squares

respectively.

l On Figure 5.22, where will all the isotopes of a single element lie?

m Along a single horizontal row, corresponding to a particular value of Z .

As you will see later, in all nuclear decays certain principles are obeyed:

• Electric charge is always conserved: the net charge of the products of a nuclear

decay is the same as the net charge of the original nucleus.

• The mass number is conserved: the total number of nucleons in the products is

the same as that in the original nucleus.

• As in all physical processes, energy is conserved.

The one complication here though, is that since the energies involved in nuclear

decays are so large, we need to take account of the relationship between energy

and mass, E = mc2. Since nuclear energies are generally measured in units of

MeV or GeV, convenient units in which to measure nuclear masses are MeV/c2 or

GeV/c2. In these units, the mass of a proton is 938.3 MeV/c2 and that of a neutron

is 939.6 MeV/c2, or around 1 GeV/c2 in each case.

Radioactive decay is governed by the exponential decay law

N(t) = N0 exp(0.693t/T1/2) (5.86)

where 0.693 = loge(2) to 3 decimal places, N0 is the initial number of radioactive

nuclei and N(t) is the average number left at time t. The half-life, T1/2,

characterises the nucleus and decay mode. The number of undecayed nuclei is

halved during any period equal to the half-life.

The binding energy B of a nucleus is the minimum energy required to

disassemble the nucleus into its constituent nucleons; it is also equal to the energy

released when the nucleus is formed from its constituents. The binding energy per

nucleon, B/A, is a measure of the relative stability of nuclei. B/A for most nuclei
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is within 10% or so of 8 MeV per nucleon, with a maximum value of about

8.8 MeV per nucleon near A = 56 (iron and nickel), then falling off slowly for

heavier nuclei and falling off quite rapidly for the light nuclei. This means that

energy can be released when heavy nuclei undergo fission or when light nuclei

undergo fusion. When the values of the total energy per nucleon (−B/A) for all

known nuclei are plotted as points above the ZN plane they lie near a surface

having the shape of a valley called the valley of stability, with the valley floor

lying directly above the path of stability. Then the β−-decay of neutron-rich

isobars and the β+-decay (or electron capture) of proton-rich isobars can be

thought of as streams running down the valley walls, while α-decay of heavy

nuclei is like a stream running down the valley floor.

The semi-empirical model of the nucleus incorporates the short-range strong

nuclear force and the repulsive Coulomb force and is based on an analogy

between a nucleus and a charged liquid drop. It identifies four contributions to

B/A: a volume energy, a surface energy, a Coulomb energy and a symmetry

energy. Using empirical parameters, the model fits the overall trend of measured

B/A values quite well but there are discrepancies in the small-scale structure

suggestive of shell effects. In the nuclear shell model each proton and neutron is

represented by a wavefunction and occupies an energy level in a potential energy

well produced by the other nucleons. The potential energy wells for neutrons

follow the nuclear matter densities, while those for protons have contributions

from Coulomb repulsion, resulting in a bump or barrier at the nuclear edge, and

wells that are less deep than the corresponding neutron wells. Nuclei with magic

numbers of nucleons, corresponding to closed shells, are particularly stable.

Because of pairing, nuclei with even numbers of protons and neutrons tend to be

more stable than those with odd numbers. The proton and neutron energy levels

are filled starting with the lowest energies and subject to the Pauli exclusion

principle. Nuclear stability favours the filling of the neutron wells and the

shallower proton wells to the same energy. This explains the neutron excess in

medium and heavy nuclei and the tendency for isobars far from the valley floor to

exhibit β-decay.

αdecay

The α-particle is simply the nucleus of the helium atom, with mass number A = 4
and atomic number Z = 2. It consists of Z = 2 protons and A− Z = 4− 2 = 2
neutrons. It is a very tightly bound arrangement: this ground state for two protons

and two neutrons has an energy that is about 28 MeV lower than the energy of the

four free nucleons.

In some cases, it is energetically favourable for a nucleus of mass number A and

atomic number Z to emit an α-particle, thereby producing a new nucleus, with

mass number A− 4 and atomic number Z − 2. A case in point is the unstable

isotope of uranium 234
92U, containing 92 protons and 142 neutrons. It undergoes

α-decay (alpha-decay) to produce an isotope of thorium, with 90 protons and 140

neutrons

234
92U →230

90 Th + 4
2He

Exercise 5.12 The nucleus of thorium-230 subsequently undergoes four more
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α-decays. What isotope of lead results?

n

You have seen that electric charge and mass number are conserved in an α-decay

process, but what of energy conservation? Well, nuclear decays will clearly

involve changes in energy, much as atomic transitions that you saw earlier. For

example, the α-decay of 234
92U liberates 4.77 MeV of kinetic energy, carried away

(almost exclusively) by the α-particle. We can write the decay as

234
92U → 230

90Th + 4
2He + 4.77 MeV

and making use of Einstein’s mass–energy relation, we have the mass equation
(
mass of 234

92U
)
=
(
mass of 230

90Th
)
+
(
mass of 4

2He
)
+ 4.77 MeV/c2

So a liberated energy of 4.77 MeV is produced by mass loss of 4.77 MeV/c2. To

appreciate how substantial this change in mass is, it may be compared with the

mass of a proton, mp ≈ 1 GeV/c2. So, in the α-decay above, the decrease in mass

is about 0.5% of the proton’s mass, and hence about 0.002% of the mass of the

original uranium nucleus, with A = 234.

Quantum-mechanical tunnelling is an essential mechanism for many nuclear

reactions involving charged particles. α-decay occurs when α-particles inside

nuclei tunnel to the outside through the Coulomb barrier. The tunnelling

probability depends very sensitively on the energy of the α-particle relative

to the top of the barrier. This explains the huge range of α-decay lifetimes

corresponding to a small range of α-particle energies.

βdecay and electron capture

The usual type of β-decay (beta-decay) involves the emission of an electron from

the nucleus of an atom. The process occurs when a neutron in the original nucleus

transforms into a proton, so increasing the atomic number by one. For reasons

that are not important here, another particle is created in the beta-decay process

too. It is called the electron antineutrino and it has zero electric charge. Creation

of an electron and an electron antineutrino occurs in what is called β−-decay

(beta-minus decay), the minus sign indicating that the electron is negatively

charged. A nucleus that undergoes β−-decay is the unstable lead isotope 214
82Pb

which transforms into a stable bismuth isotope 214
83Bi. The decay in this case can

be represented as

214
82Pb → 214

83Bi + e− + ν̄e

The rather clumsy symbol ν̄e represents an electron antineutrino which has zero

charge. The subscript e indicates that it is associated with an electron, and the bar

over the top of the letter indicates that it is an antiparticle.

Exercise 5.13 A nucleus of the unstable nitrogen isotope 16
7N undergoes

β−-decay. Write down an expression for this nuclear decay, indicating what

nucleus is formed as a result.

n

The process described above is only half of the story as far as beta-decay is

concerned. There is a very closely related process, called β+-decay (beta-plus

197



Chapter 5 Physics

decay or sometimes inverse beta decay), in which a positively charged particle,

called a positron, is created, along with an electron neutrino, which has zero

charge. In this process, a proton in the original nucleus transforms into a neutron,

so decreasing the atomic number by one. A nucleus that undergoes β+-decay is

the unstable oxygen isotope 14
8O which transforms into a stable nitrogen isotope

14
7N. The decay in this case can be represented as

14
8O → 14

7N + e+ + νe

Here, the symbol e+ is used to represent the positron (also known as an

antielectron) and νe is the electron neutrino. The observable consequence of

β+-decay is that the positron produced will immediately combine with an

electron to produce gamma-rays:

e+ + e− → 2γ

Exercise 5.14 A nucleus of the unstable phosphorus isotope 30
15P undergoes

β+-decay. Write down an expression for this decay process, indicating what

nucleus is formed as a result.

n

Related to β+-decay is the process of electron capture, in fact the outcome is

virtually the same. Some nuclei which have too many protons, rather than

undergoing β+-decay, instead capture an electron into the nucleus. As a result, a

proton is transformed into a neutron and an electron neutrino is emitted. A

nucleus that undergoes electron capture is the unstable beryllium isotope 7
4Be

which transforms into a stable lithium isotope 7
3Li. The decay in this case can be

represented as

7
4Be + e− → 7

3Li + νe

As in β+-decay, the atomic number decreases by one and the mass number

remains the same.

γdecay

The final type of nuclear decay that we consider here is γ-decay (gamma-decay).

In contrast to the two processes of α-decay and β-decay, this involves no change

in the numbers of neutrons and protons. Gamma-decay occurs when a nucleus

finds itself in an excited state. A quantum jump down to the ground-state

configuration of the same number of neutrons and protons is accompanied by the

emission of a photon, as with electron transitions in atoms. This time however, the

photon energy is around a million time larger – it is a gamma-ray photon. Such

excited states of nuclei may be created in the process of α-decay or β-decay, or by

the collisions of nuclei at high kinetic energies.

Exercise 5.15 The unstable isotope of caesium 137
055Cs undergoes β−-decay to

produce an excited state of the barium isotope 137
56Ba. The barium nucleus then

decays to its ground state with the emission of a gamma-ray photon of energy

662 keV. What are the atomic number and mass number of the barium nucleus

after the γ-decay?

n
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Nuclear fusion

A final type of nuclear process which is important in astrophysics is that of

nuclear fusion. In fact it is processes of this kind that provide the energy source

for stars. Many nuclear reactions between charged particles occur by the particles

tunnelling inwards through their mutual Coulomb barrier so that they can interact

by the strong nuclear force. Fusion reactions in the Sun can only occur at the

prevailing temperatures by tunnelling.

As noted above, certain configurations of nucleons are energetically more

favourable than others. Hence, by forcing certain nuclei sufficiently close together

(overcoming their mutual electrical repulsion), they may fuse to form a single

more massive nucleus which is at a lower energy than the original two nuclei.

Once again, an example should make the process clear.

A nuclear fusion process which occurs in the majority of stars is the fusion of two

nuclei of helium-3. It may be represented as

3
2He + 3

2He → 4
2He + p + p + energy

The mass of each nucleus of helium-3 is 2808 MeV/c2, whilst the mass of a

nucleus of helium-4 is 3727 MeV/c2 and the mass of a proton is 938 MeV/c2.

Simply adding up these masses, there is a deficit of 13 MeV/c2 on the right-hand

side. This lost mass appears as energy, liberated by the fusion process.

To initiate such reactions, high temperatures (of the order 107 K or higher) are

required to provide the necessary kinetic energy to overcome the electrical

repulsion between nuclei (all of which are positively charged). Such conditions

generally only occur in the cores of stars.

Fusion can liberate energy when various light nuclei are combined together. So, in

the cores of stars, nuclear fusion processes liberate energy to power the star and

also convert light elements into heavier ones. The limiting mass at which the

process ceases to be energetically favourable is around that of the nuclei of iron,

cobalt and nickel. So, nuclear fusion provides an energy source for stars only until

their cores are composed of nuclei such as iron. For many stars, nuclear fusion

will end long before iron is formed as the temperatures in their cores are not

sufficient to trigger fusion reactions beyond, say, helium or carbon. The life cycles

of stars are closely dependent on these energetic processes.

Exercise 5.16 The triple-alpha process involves the fusing together of three

helium-4 nuclei to form a single nucleus of carbon-12. Show that, whilst the

fusion of two helium-4 nuclei to form a nucleus of beryllium-8 involves a slight

energy deficit, the subsequent fusion of a beryllium-8 nucleus with another

helium-4 nucleus is energetically favoured. (You may assume: mass of 4
2He =

3.7274 GeV/c2, mass of 8
4Be = 7.4549 GeV/c2, mass of 12

6C = 11.1749 GeV/c2.)

n

5.9.3 Particle physics

There are four fundamental forces or interactions through which particles can

interact: the strong, weak, electromagnetic and gravitational interactions. There
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are exchange particles associated with each of the fundamental forces: the photon

(for electromagnetism), the W+, W− and Z0 particles (for the weak interaction),

and eight kinds of gluon (for the strong interaction). These are all spin 1 particles.

The strong, electromagnetic and weak interactions of the fundamental particles

(and their antiparticles) may be described theoretically by quantum field theories

in which the forces are mediated by exchange particles. These quantum field

theories have been developed into the standard model of particle physics. This is

not thought to be the final theory, but its construction is regarded as a major

triumph since, by using Feynman diagrams and other techniques, it permits the

evaluation of measurable quantities such as cross-sections and mean lifetimes.

Going beyond the standard model might require the formulation of a grand unified

theory, or a string theory that might involve supersymmetry.

Today, it is believed that there are two families of fundamental particles, called

leptons and quarks. By fundamental we mean that there is no evidence that these

particles are composed of smaller or simpler constituents. There are just six

leptons and six quarks, together with an equal number of their antiparticles. All

the familiar forms of matter are ultimately composed of these particles.

Figure 5.23 (a) The three generations of leptons and their electric charges. (b)

The three generations of quarks and their electric charges.

The six different types are often referred to as different flavours of lepton, and

the three pairs are said to represent the three generations of leptons. The first

generation consists of the familiar electron (e) and its β-decay partner, the

electron neutrino (νe). The second pair of leptons consists of the muon (µ) and

another type of neutrino called a muon neutrino (νµ). The muon is similar to the

electron except that it is about 200 times heavier and unstable with a fairly long

lifetime of a few microseconds. The third generation of leptons consists of a

particle called a tauon (τ ) and a third type of neutrino called a tauon neutrino (ντ ).

The tauon is similar to and even heavier than the muon and has a much shorter

lifetime. These two heavier leptons, being unstable, are not normally constituents

of matter, but are created in high-energy collisions between other subatomic

particles. Associated with these six leptons are the six antileptons, particles of
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antimatter. These include the positron (e+) which is the antiparticle of the

electron and the electron antineutrino (ν̄e). Leptons are spin 1/2 particles and have

lepton number L = 1 whilst the corresponding family of 6 antileptons have

L = −1. Leptons feel the weak interaction and the charged ones also feel the

electromagnetic interaction, but leptons do not feel the strong interaction.

The pattern of the leptons is repeated for the quarks. The six types (or flavours) of

quark are labelled (for historical reasons) by the letters u, d, c, s, t and b, which

stand for up, down, charm, strange, top and bottom. Like the leptons, the quarks

are paired off in three generations on the basis of their mass. To each quark, there

corresponds an antiquark, with the opposite electric charge and the same mass.

The antiquarks are denoted by ū, d̄, c̄, s̄, t̄ and b̄. Unlike leptons, the quarks and

antiquarks have never been observed in isolation. They only seem to occur bound

together in combinations held together by gluons. For example, the familiar

proton is a combination of two up quarks and a down quark, which we can write

as uud. Note that each up quark carries an electric charge of 2e/3 and a down

quark carries a charge of −e/3, so the combination uud does indeed give a net

electric charge equal to the charge e on a proton. Similarly, a neutron is the

combination udd which has a net electric charge of zero. Observable particles

consisting of combinations of quarks are collectively called hadrons and there are

literally hundreds of them, the proton and neutron being the most familiar. There

are three recipes for building hadrons from quarks: A hadron can consist of: three

quarks (in which case it is called a baryon); three antiquarks (in which case it is

called an antibaryon); or one quark and one antiquark (in which case it is called a

meson). Baryons have half odd-integer spin (1/2, 3/2, etc.) and baryon number

B = 1 whilst the corresponding family of antibaryons have B = −1. Mesons

have zero or integer spin (0, 1, 2, etc.) and baryon number B = 0. Baryons and

mesons can interact through the strong interaction as well as the weak interaction

and, if charged, the electromagnetic interaction.

When particles collide, certain quantities such as total electric charge, total

(relativistic) momentum and total (relativistic) energy are always conserved. The

particles may undergo elastic collisions where the colliding particles simply

exchange energy and momentum, or inelastic collisions where (relativistic)

kinetic energy may be converted into rest energy and so the nature and number of

particles may change. The likelihood of a particle being scattered in a given

process at a specified energy is described by a measurable quantity called a

cross-section. Cross-sections are measured in barns (1 barn = 10−28 m2).

5.10 Electromagnetism

As noted earlier, virtually the only information about the Universe which we

receive here on Earth is that which arrives in the form of electromagnetic

radiation. In order to understand the processes occurring in stars and galaxies it is

therefore vital to have an appreciation of the ways in which electromagnetic

radiation arises and interacts with matter. To understand electromagnetic

radiation, we first consider the nature of electricity and magnetism.
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5.10.1 Electricity and magnetism

The topic of electricity and magnetism forms a huge part of physics, and it is

therefore important in many areas of astrophysics and cosmology. At the root of

many electromagnetic phenomena are the key results that static electric charges

give rise to electric forces, whilst moving electric charges (i.e. currents) give rise

to magnetic forces.

A crucial equation is Coulomb’s law, discovered by Charles Augustin de

Coulomb in 1785. Following a similar formulation to Newton’s law of gravity, it

may be expressed as follows. Two particles of unlike (or like) electric charge, at

rest, separated by a distance r, attract (or repel) each other with an electrostatic

force that is inversely proportional to the square of their separation and is

proportional to the product of the charges. Coulomb’s law of force between

charged particles situated in a vacuum may be expressed in the form of the vector

equation

F 21 =
q1q2

4πε0r2
r̂ (5.87)

where q1 and q2 are the electric charges of the two particles and ε0 is a constant

known as the permittivity of free space with a value 8.854 × 10−12 C2 N−1 m−2,

r̂ is a unit vector directed from q1 towards q2. Electric charges are measured in

the SI unit of coulomb (symbol C) and the charge of a single electron, denoted by

−e, is −1.602 × 10−19 C.

Electric field E(r) is a vector quantity, defined at all points in space, such that, at

any particular point r, its value is given by the electrostatic force per unit charge

at that point. Equivalently, the electrostatic force experienced by a particle whose

charge is of magnitude q is given by

F el = qE(r) (5.88)

where E(r) is the electric field. The direction of F el is parallel to the direction of

E at the point in question. The two vectors will be in the same direction if the

charge is positive, and in the opposite direction if the charge is negative.

(a)

B

v

(b)

(c)

B
v

Fmag

–F

B
v

–F

Figure 5.24 (a) The direction

of the magnetic force F

experienced by a moving

charged particle is at right

angles to the plane containing

the magnetic field vector B and

the velocity vector v of the

particle. (b) For motion at right

angles to the magnetic field, the

particle will travel in a circle. (c)

In general, a charged particle

passing through a region of

uniform magnetic field will

travel in a helical path around

magnetic field lines.

Magnetic field is also a vector quantity denoted by B(r) and measured in the SI

unit of tesla (symbol T). Magnetic fields are generated by, and give rise to forces

which act upon, moving electric charges. In particular, the magnetic force on a

particle moving with velocity v and whose charge is of magnitude q, passing

through a magnetic field B(r), is given by

Fmag = qv ×B(r) (5.89)

where the direction of the force is found using the right-hand rule, as with all

vector products.

Combining the equations for electric and magnetic force, gives a general equation

known as the Lorentz force law, for the force on a charged particle in a region

containing both electric and magnetic fields:

F = q [E(r) + v × B(r)] (5.90)

The direction of the magnetic force vector is always at right angles to the plane

containing the velocity vector of the charged particle and the magnetic field
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vector, as shown in Figure 5.24a. The magnetic force will therefore give rise to an

acceleration of the particle (by Newton’s second law) which is at right angles to

the original direction of motion. So if the direction of motion of the charged

particle is at right angles to a uniform magnetic field, the particle will trace out

a circular path orbiting around the magnetic field lines (Figure 5.24b) as its

direction of motion is constantly altered by the action of the magnetic force. For

an arbitrary initial direction of motion, a charged particle will travel in a helical

path around magnetic field lines (Figure 5.24c) as it travels through space.

Worked Example 5.2

What is the radius of the circular path traced out by a charged particle of

charge q and mass m travelling at a speed v at right angles to a magnetic

field of strength B?

Solution

The magnitude of the magnetic force (qvB) must be equated to the

magnitude of the centripetal force acting on the particle, where the

magnitude of the centripetal force is equal to the mass of the particle

(m) multiplied by the magnitude of the centripetal acceleration (v2/r),

therefore mv2/r = qvB. Rearranging this gives the radius of the circle as

r = mv/qB. This is known as the cyclotron radius of the particle.

Exercise 5.17 (a) What is the cyclotron radius of an electron travelling

with speed 3.0 × 106 m s−1 (i.e. 1% of the speed of light) at right angles to

the magnetic field of a pulsar whose strength is 3.0 × 108 T? (b) What

is the frequency at which the electron completes its orbits? (Assume

me = 9.1× 10−31 kg and −e = −1.6× 10−19 C.)

n

The frequency at which the electron orbits the magnetic field lines will correspond

to the fundamental frequency of the cyclotron radiation produced; this is known as

the cyclotron frequency. An electron travelling through a magnetic field of

strength a few hundred megatesla will therefore radiate electromagnetic radiation

with a frequency of nearly 1019 Hz, which corresponds to the X-ray part of the

spectrum, as you will see in the next Section.

5.10.2 Electromagnetic waves

The discussion earlier about atoms referred to light in terms of ‘particles’ of

electromagnetic radiation called photons. This was an appropriate description

because we were concerned with the interaction of light with matter (i.e. its

absorption or emission by atoms). However, although light interacts with matter

as though it’s composed of a stream of particles, light propagates like a wave.

The wavelength of a wave is the distance between two similar points on the wave

profile, and it is given the symbol λ. The frequency of a wave is the number of

cycles of the wave that pass a given point in one second, and in astrophysics it is
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usually given the symbol ν. The wavelength and frequency of an electromagnetic

wave are related by the equation

c = λν (5.91)

where c is the speed of light and has a value of 3.00 × 108 m s−1.
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Figure 5.25 The

electromagnetic spectrum

showing the wavelengths,

frequencies and photon energies

appropriate to each region.

Different regions of the electromagnetic spectrum are distinguished by the

different wavelengths and frequencies of radiation (Figure 5.25). The longest

wavelength, lowest frequency, radiation is referred to as radio waves. Moving

to shorter wavelengths and higher frequencies the radiation is referred to as

microwaves, infrared radiation, (visible) light, ultraviolet radiation, and X-rays.

The radiation with the shortest wavelength and highest frequency is referred to as

gamma-rays.

The link between the photon and wave pictures of electromagnetic radiation is

provided by the relationship that each photon carries an amount of energy Eph that

is determined by the frequency or wavelength of the radiation used to characterize

its propagation, namely

Eph = hν =
hc

λ
(5.92)

where h is Planck’s constant and equal to 6.63 × 10−34 J s or

4.14 × 10−15 eV Hz−1 in alternative units. Related to this is the expression for
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the momentum of a photon. Since photons have zero mass, their momentum

cannot be given by a relationship like p = mv. Instead, the relationship for the

magnitude of a photon’s momentum is

pph =
Eph

c
=
hν

c
=
h

λ
(5.93)

Exercise 5.18 What is the longest wavelength spectral line corresponding to

each of the (a) Lyman and (b) Paschen series of the hydrogen spectrum (see

Figure 5.15), and in which regions of the electromagnetic spectrum do these lines

occur? (Assume h = 4.14 × 10−15 eV Hz−1 and c = 3.00 × 108 m s−1.)

n

Since photons possess momentum, they can exert a pressure. Radiation pressure

is the pressure which electromagnetic radiation exerts on a surface. For blackbody

radiation in equilibrium with a surface, the radiation pressure exerted on the

surface is given by

Prad =
4σT 4

3c
(5.94)

where σ is the Stefan-Boltzmann constant (5.671 × 10−8 J s−1 m−2 K−4) and c is

the speed of light.

A final feature of all electromagnetic radiation is that it can be polarized.

Electromagnetic radiation propagates as mutually interacting electric and

magnetic fields (see Section 5.10.1), and a snapshot of such a wave is shown in

Figure 5.26. The electric field and magnetic field are each perpendicular to the

direction of propagation, so the wave is said to be transverse. In this case we are

supposing that the electric field is confined to the vertical plane, and that its

direction and magnitude at each point along the propagation axis are indicated by

the orange curve. The magnetic field at each point along the propagation axis is

indicated by the green curve.

Polarization occurs when there is a restriction placed on the direction in which

the vibrations in such a wave can take place. The vibrations must be at right

angles to the direction of propagation, but that still leaves them free, in principle,

to take up a variety of orientations. Two such orientations are shown in

Figure 5.27, but there are, in principle, an infinite number of other orientations

that are intermediate between these extremes. Figure 5.27a shows the electric

field vibrating in the vertical plane and in Figure 5.27b it vibrates in the horizontal

plane. In each case the wave is said to be plane (or linearly) polarized along the

direction of oscillation.
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Figure 5.26 The variations of electric and magnetic fields in an

electromagnetic wave.

(a)

(b)

Figure 5.27 A plane polarized electromagnetic wave: vibrating (a) in a vertical

plane, (b) in a horizontal plane.

Light and other electromagnetic radiation is generally unpolarized, i.e. it is a

superposition of a large number of polarized waves that have electric fields in

every possible direction perpendicular to the direction of propagation. This is

because each atom emits light quite independently of the surrounding atoms, and

though the light emitted from an individual atom is polarized, when the light from

a vast number of atoms is combined, there is no overall preferred polarization

direction. Some other processes by which electromagnetic radiation is emitted

however do give rise to polarized electromagnetic radiation.

5.10.3 Spectra

There are three basic types of spectra, as shown in Figure 5.28, encountered in

astrophysics. Continuous spectra can be produced by hot objects in which there
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are many energy levels with extremely small separations between them. These

levels form a continuous energy band within which transitions are possible, so a

distribution of photons with a continuous range of energies is emitted. If light

from such a source passes through a gas then photons of some particular energies

are absorbed by the gas, and are then emitted in all directions. Thus if we look

towards the gas in a direction other than towards the source, we see the photon

energies emitted by the gas as a set of bright lines on a dark background. This is

an emission line spectrum. If we look towards the gas in the direction of the

source, the continuous spectrum displays dark lines at the absorbed photon

energies. This is an absorption line spectrum.

gas

hot dense
body

emission
line spectrum

absorption
line spectrum

continuous
spectrum

Figure 5.28 Three types

of spectra encountered in

astrophysics. In many cases, real

spectra are superpositions of

these types.

l Why is the spectrum of the Sun (and other stars) an absorption line spectrum?

m A continuous spectrum is produced deep inside the Sun (or other star) but as

the photons emerge through the cooler outer layers, some photon energies are

absorbed by the atoms present in the photosphere.

The continuous spectra emitted by many hot objects resemble so-called

black-body spectra. Black-body spectra all have similar shapes (Figure 5.29)

with the property that the higher the temperature of the object, the higher the

frequency (or shorter the wavelength) at which the peak intensity in the

black-body distribution occurs. The name arises because a ‘black-body’ is one

which absorbs all the radiation falling on it and is also a perfect emitter of

radiation. As you saw earlier, the spectra of stars are approximately those of

black-bodies (with absorption, and sometimes emission, lines superimposed).
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Figure 5.29 Black-body spectra corresponding to different temperatures.

Black-body radiation has a continuous distribution of photon energies and the

graph of the spectrum has a characteristic shape. The shape of the spectrum is

described by the Planck function, which can be written in one of two ways.

(These are related to the two forms of spectral flux density which you read

about in Section 3.4.) The power per unit area per unit frequency (or per unit

wavelength) per unit solid angle is:

Bν(T ) =

(
2hν3

c2

)
1

exp
(
hν
kT

)
− 1

W m−2 Hz−1 sr−1 (5.95)

Bλ(T ) =

(
2hc2

λ5

)
1

exp
(

hc
λkT

)
− 1

W m−2 m−1 sr−1 (5.96)

where k is Boltzmann’s constant, h is Planck’s constant, c the speed of light, λ
and ν are the wavelength and frequency in question, and T is the temperature of

the black-body source.
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Exercise 5.19 Verify that νBν(T ) = λBλ(T ) for all temperatures,

wavelengths and frequencies.

n

Although the Planck function formulae look quite fearsome, you will rarely need

to use them explicitly. There is a much simpler equation, known as the Wien

displacement law, which describes the wavelength at which a black-body

spectrum reaches a peak, and this is often more useful. In the two representations,

the maximum value of Bν occurs at a wavelength determined by

λmaxT = 5.1× 10−3 m K (maximizing Bν) (5.97)

and the maximum value of Bλ occurs at a wavelength determined by

λmaxT = 2.9× 10−3 m K (maximizing Bλ) (5.98)

Another useful expression is that for the mean photon energy in the black-body

spectrum. Irrespective of whether a Bν(T ) or a Bλ(T ) function is used, the mean

photon energy is

〈Eph〉 = 2.70kT (5.99)

Exercise 5.20 A particular black-body spectrum is produced by a body at a

temperature of 108 K.

(a) What is the photon energy in electronvolts corresponding to the wavelength at

which Bν reaches a maximum?

(b) What is the photon energy in electronvolts corresponding to the wavelength at

which Bλ reaches a maximum?

(c) What is the mean photon energy of this spectrum in electronvolts?

(d) In what region of the electromagnetic spectrum does the peak of the

black-body curve lie?

(Assume h = 6.63 × 10−34 J s, c = 3.00 × 108 m s−1, k = 1.38 × 10−23 J K−1,

1 eV = 1.60 × 10−19 J.)

n

Black-body spectra are referred to as thermal spectra because they are produced

by matter which has a characteristic temperature. Other types of spectra that are

encountered in astrophysics include those due to bremsstrahlung and synchrotron

radiation.

Bremsstrahlung (the German for ‘braking radiation’) arises when charged

particles (such as electrons) are decelerated when passing close to other charged

particles (such as atomic nuclei). Bremsstrahlung has a continuous spectrum,

and when produced in a plasma whose electrons have an energy distribution

described by the Maxwell–Boltzmann distribution, is described as thermal

bremsstrahlung. In astrophysics and cosmology, thermal bremsstrahlung is

observed in the X-ray region of the electromagnetic spectrum from plasma at

temperatures of 107 − 108 K.

Synchrotron radiation is generated by highly relativistic electrons that are

accelerated by magnetic fields. As such it gives rise to spectra which are described
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as non-thermal. Like black-body radiation and bremsstrahlung, synchrotron

radiation also has a continuous spectrum, and in an astrophysical context may be

observed across the whole electromagnetic spectrum from objects ranging from

pulsars to active galaxies. A synchrotron spectrum typically has a power-law form

on a spectral energy distribution, and the radiation is also polarized.

5.10.4 Opacity and optical depth

Whenever electromagnetic radiation passes though a medium (which in

astrophysics is usually in the form of a gas) some of the radiation will generally

be absorbed. The quantity describing the amount of absorption by the medium is

known as the opacity. Unfortunately though, there are two definitions of opacity

in use in astrophysics.

1. The first definition of opacity is the ratio of the total radiant energy received

by a body to the amount transmitted through it. Thus, under this definition, a

totally transparent body has an opacity of one (all radiation transmitted)

whilst an opaque body has an opacity of infinity (all radiation absorbed).

2. A second definition of opacity is the absorption probability per unit time

divided by the flux of photons per unit time. Under this definition therefore,

a totally transparent body has an opacity of zero (zero probability of

absorption).

Related to opacity is the concept of optical depth. Denoted by the symbol τ , it is

defined by the following:

Ix/I0 = exp(−τ) (5.100)

where I0 and Ix are amount of radiant energy incident on a gaseous body and the

amount remaining after travelling for a distance x within the gas. Optical depth,

like opacity, depends on the chemical composition, density and temperature of the

gas in question.

l What are the optical depths of a transparent body and an opaque body?

m For a transparent body, Ix = I0, so exp(−τ) = 1 and therefore τ = 0. For an

opaque body, Ix = 0, so exp(−τ) = 0 and therefore τ = ∞.

An optical depth of one implies that the radiation is reduced by a factor of

exp(−1) or 1/e as a result of transmission through the gas. If the optical depth is

much greater than one, the body is referred to as being optically thick and if the

optical depth is much less than one, the body is referred to as being optically thin.

Despite its name, optical depth can refer to radiation from any region of the

electromagnetic spectrum. For instance the optical depth to X-rays of energy

1 keV through the Crab nebula supernova remnant is τ ≈ 0.2. This implies that

the intensity of 1 keV X-rays is reduced to about exp(−0.2) = 0.8 or 80% as they

pass through the nebula.

Summary of Chapter 5

1. The velocity of a particle is its rate of change of position with respect to

time, v = dr/dt, whilst the acceleration of a particle is its rate of change of
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velocity with respect to time, a = dv/dt.

2. For uniform motion in a circle, the magnitude of the centripetal acceleration

is a = rω2 = v2/r, where ω is the angular speed (= 2π/P ) and v is the

magnitude of the instantaneous velocity tangential to the circle.

3. Newton’s three laws of motion are the key to predicting how bodies will

move. The second law may be written F = ma if m is constant, or more

generally F = dp/dt, where F is a force acting on a body, m its mass, a its

acceleration and p its linear momentum.

4. Newton’s law of universal gravitation describes the gravitational force

between two objects of mass m1 and m2 whose centres are separated by a

distance r:

F 21 = −Gm1m2

r2
r̂

5. According to Einstein’s theory of special relativity, the transformations

between the coordinates measured in two frames of reference in standard

configuration are:

x′ =
x− V t√
1− V 2

c2

y′ = y

z′ = z

t′ =
t− V x/c2√

1− V 2

c2

where V is the speed of one frame of reference relative to the other.

6. These transformations lead to effects described as time dilation and length

contraction whereby ‘moving clocks run slow’ and ‘moving rods contract in

their direction of motion’.

7. The translational kinetic energy of a body is given by EKE = 1
2mv

2 whilst

the magnitude of its linear momentum is p = mv. Both the energy and

linear momentum of an isolated system are conserved. A collision in which

kinetic energy is conserved is said to be elastic.

8. The equations for translational kinetic energy and momentum need to be

modified as the speeds involved approach the speed of light. The total

relativistic energy of a body is the sum of its relativistic translational kinetic

energy and its mass energy.

9. The work done on any body by a force is the energy transferred to or from

the body. The energy of a system is a measure of its capacity for doing work

and power is the rate at which work is done or energy is transferred.

10. The gravitational potential energy of a body of mass m at a distance r from

the centre of a body of mass M is EGR = −GmM/r and the escape speed

from the surface of a body of mass M and radius r is vesc = (2GM/r)1/2.

11. The rotational analogues of force, mass, linear momentum and translational

kinetic energy are torque, moment of inertia, angular momentum and

rotational kinetic energy respectively. Angular momentum is conserved for a

system on which no external torques act.
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12. Macroscopic properties of a gas include its pressure (P = F/A) and density

(ρ =M/V ). Another macroscopic property, the temperature of a gas, is

usefully defined as a label that determines the direction of heat flow: heat

flows from a body with a higher temperature to a body with a lower

temperature, and keeps on flowing until both bodies are at the same

temperature.

13. An ideal gas obeys the relationship PV = NkT , or equivalently

P = ρkT/m, and has an average translational kinetic energy per molecule

of 〈EKE〉 = 3kT/2.

14. The sound speed in a gas depends on the ratio of the pressure to the density

of the gas or equivalently on the temperature of the gas.

15. Atoms consist of positively charged nuclei (containing protons and (usually)

neutrons) surrounded by a cloud of negatively charged electrons. The atomic

number Z quantifies the number of protons in the nucleus and determines

the type of atom. The mass number A quantifies the total number of protons

and neutrons in the nucleus and specifies the particular isotope of the atom.

In a neutral atom, the number of electrons is equal to the number of protons.

16. When atoms make transitions between different energy levels, photons are

absorbed or emitted such that Eph = ∆Eatom. Hydrogen has the simplest

energy level diagram with the energy of the nth level determined by

En = −13.60 eV/n2.

17. The Balmer series of lines in the hydrogen spectrum originates in transitions

down to or up from the n = 2 energy level. Such transitions give rise to

emission or absorption lines in the visible part of the spectrum.

18. The Boltzmann equation describes how the relative proportion of atoms in

different energy levels vary with temperature. The Saha ionization equation

describes how the relative numbers of ions and neutral atoms vary with

temperature.

19. Quantum physics implies that any particle will have an associated

wavelength, known as its de Broglie wavelength, given by λdB = h/p.

20. The information describing the behaviour of a particle is contained in its

wave function which is the solution to Schrödinger’s equation for that

particle. When the particle has particular, allowed, values of energy,

momentum, spin, etc., it is described as being in a particular quantum state

and may be characterized by a set of quantum numbers. The Pauli exclusion

principle asserts that for certain particles, such as electrons, no two particles

in a system can occupy the same quantum state.

21. In a degenerate gas, particles are forced into higher energy quantum states

than they would normally occupy at a particular density and temperature.

This gives rise to a degeneracy pressure. In this situation, the de Broglie

wavelength of the particles is larger than their separation.

22. Nuclei can be transformed from one element to another as a result of

α-decay, β-decay or electron capture. In these processes, and also in

γ-decay, energy is released.

23. Nuclear energy can also be liberated as a result of nuclear fusion when

lighter nuclei fuse to form heavier nuclei. This is the main source of energy

in stars.

212



Summary of Chapter 5

24. Coulomb’s law describes the electrostatic force between two particles of

charge q1 and q2 whose centres are separated by a distance r:

F 21 =
q1q2

4πε0r2
r̂

25. The electrostatic force experienced by a charged particle in an electric field

E is given by F el = qE , whereas the magnetic force on a charged particle

moving with velocity v in a magnetic field B, is given by Fmag = qv × B.

The direction of the electric force is the same as that of the electric field (or

opposite if the charge is negative), whilst the direction of the magnetic force

is at right angles to the plane containing the velocity vector of the particle

and the magnetic field vector.

26. Electromagnetic radiation propagates as mutually perpendicular,

self-propagating electric and magnetic fields. It is a transverse wave and

may be polarized.

27. Although electromagnetic radiation interacts with matter as though it is

composed of a stream of particles, called photons, it propagates as a wave.

The wavelength, frequency and photon energy are related by c = λν and

Eph = hν.

28. Electromagnetic radiation with the longest wavelengths, lowest frequencies

and lowest energy photons is referred to as radio waves; electromagnetic

radiation with the shortest wavelengths, highest frequencies and highest

energy photons is referred to as gamma-rays. Visible light refers to

electromagnetic radiation with wavelengths between around 400 nm and

700 nm or with photon energies between around 2 eV and 3 eV.

29. Continuous spectra of electromagnetic radiation can be produced by hot,

dense objects in which there are many energy levels with extremely small

separations between them. If a continuous spectrum passes through a gas

then photons of some particular energies are absorbed by the gas, and are

then emitted in all directions. Depending on the direction in which this gas

is viewed, either an emission line spectrum or an absorption line spectrum

may be observed.

30. A black-body spectrum has a characteristic continuous shape, described by

the Planck function. Higher temperature black-body spectra peak at shorter

wavelengths (higher frequencies or photon energies) as determined by the

Wien displacement law. The mean photon energy of a black-body spectrum

is 〈Eph〉 = 2.70kT .

31. The amount by which a gaseous body absorbs radiation is characterized in

terms of its optical depth, defined by Ix/I0 = exp(−τ). If τ ≪ 1 the body

is said to be optically thin and if τ ≫ 1 the body is optically thick.
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Table 6.1 Common SI unit conversions and derived units

Quantity Unit Conversion

speed m s−1

acceleration m s−2

angular speed rad s−1

angular acceleration rad s−2

linear momentum kg m s−1

angular momentum kg m2 s−1

force newton (N) 1 N = 1 kg m s−2

energy joule (J) 1 J = 1 N m = 1 kg m2 s−2

power watt (W) 1 W = 1 J s−1 = 1 kg m2 s−3

pressure pascal (Pa) 1 Pa = 1 N m−2 = 1 kg m−1 s−2

frequency hertz (Hz) 1 Hz = 1 s−1

charge coulomb (C) 1 C = 1 A s

potential difference volt (V) 1 V = 1 J C−1 = 1 kg m2 s−3 A−1

electric field N C−1 1 N C−1 = 1 V m−1 = 1 kg m s−3 A−1

magnetic field tesla (T) 1 T = 1 N s m−1 C−1 = 1 kg s−2 A−1

Table 6.2 Other unit conversions

wavelength mass-energy equivalence

1 nanometre (nm) = 10Å = 10−9 m 1 kg = 8.99 × 1016 J/c2 (c in m s−1)

1 ångstrom = 0.1 nm = 10−10 m 1 kg = 5.61 × 1035 eV/c2 (c in m s−1)

angular measure distance

1◦ = 60 arcmin = 3600 arcsec 1 astronomical unit (AU) = 1.496 × 1011 m

1◦ = 0.01745 radian 1 light-year (ly) = 9.461 × 1015 m = 0.307 pc

1 radian = 57.30◦ 1 parsec (pc) = 3.086 × 1016 m = 3.26 ly

temperature energy

absolute zero: 0 K = −273.15◦C 1 eV = 1.602 × 10−19 J

0◦C = 273.15 K 1 J = 6.242 × 1018 eV

spectral flux density cross-section area

1 jansky (Jy) = 10−26 W m−2 Hz−1 1 barn = 10−28 m2

1 W m−2 Hz−1 = 1026 Jy 1 m2 = 1028 barn

cgs units pressure

1 erg = 10−7 J 1 bar = 105 Pa

1 dyne = 10−5 N 1 Pa = 10−5 bar

1 gauss = 10−4 T 1 atm pressure = 1.01325 bar

1 emu = 10 C 1 atm pressure = 1.01325 × 105 Pa
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Table 6.3 Constants

Name of constant Symbol SI value

Fundamental constants

gravitational constant G 6.673 × 10−11 N m2 kg−2

Boltzmann constant k 1.381 × 10−23 J K−1

speed of light in vacuum c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s

~ = h/2π 1.055 × 10−34 J s

fine structure constant α = e2/4πǫ0~c 1/137.0

Stefan-Boltzmann constant σ 5.671 × 10−8 J m−2 K−4 s−1

Thomson cross-section σT 6.652 × 10−29 m2

permittivity of free space ε0 8.854 × 10−12 C2 N−1 m−2

permeability of free space µ0 4π × 10−7 T m A−1

Particle constants

charge of proton e 1.602 × 10−19 C

charge of electron −e −1.602 × 10−19 C

electron rest mass me 9.109 × 10−31 kg

0.511 MeV/c2

proton rest mass mp 1.673 × 10−27 kg

938.3 MeV/c2

neutron rest mass mn 1.675 × 10−27 kg

939.6 MeV/c2

atomic mass unit u 1.661 × 10−27 kg

Astronomical constants

mass of the Sun M⊙ 1.99 × 1030 kg

radius of the Sun R⊙ 6.96 × 108 m

luminosity of the sun L⊙ 3.83 × 1026 J s−1

mass of the Earth M⊕ 5.97 × 1024 kg

radius of the Earth R⊕ 6.37 × 106 m

mass of Jupiter MJ 1.90 × 1027 kg

radius of Jupiter RJ 7.15 × 107 m

astronomical unit AU 1.496 × 1011 m

light-year ly 9.461 × 1015 m

parsec pc 3.086 × 1016 m

Hubble parameter H0 70.4 ± 1.5 km s−1 Mpc−1

2.28 ± 0.05 × 10−18 s−1

age of Universe t0 13.73 ± 0.15 × 109 years

current critical density ρcrit,0 9.30 ± 0.40 × 10−27 kg m−3

current dark energy density ΩΛ,0 73.2 ± 1.8%
current matter density Ωm,0 26.8 ± 1.8%
current baryonic matter density Ωb,0 4.4± 0.2%
current non-baryonic matter density Ωc,0 22.3 ± 0.9%
current curvature density Ωk,0 −1.4± 1.7%
current deceleration q0 −0.595 ± 0.025
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Table 6.4 Greek letters and the quantities they represent

α fine structure constant or viscosity parameter

β speed as a fraction of speed of light or angular displacement

γ Lorentz factor or adiabatic index or shear

δ small change or Kronecker delta

ε permittivity of free space or energy generation rate or complex ellipticity

ζ mass-radius index or equation of state parameter

η efficiency or dynamical viscosity or Minkowski metric or entropy per baryon

θ arbitrary angle or angular coordinate or degeneracy parameter

κ opacity or convergence

λ wavelength or length scale or affine parameter

µ mean molecular weight or proper motion or relative mass or reduced mass

or chemical potential or magnification

ν frequency or kinematic viscosity or temperature index of reaction rate

ξ duty cycle or correlation function or impact parameter

or projected distance between star and planet in stellar radii

π 3.141... or parallax angle

ρ mass density or electric charge density

σ Stefan-Boltzmann constant or cross section or shear stress or standard deviation

or velocity dispersion

τ timescale or half-life or optical depth

φ phase or azimuthal coordinate or inflaton field or luminosity function

χ statistical test or energy term in wave function

ψ time independent wave function or scaled projected Newtonian potential

ω angular speed or angular frequency or longitude of pericentre

Γ torque or connection coefficient

∆ change in a quantity or Gamow width

Λ cosmological constant or Lorentz transformation matrix

Π product

Σ summation or surface density

Φ phase or gravitational potential

Ψ wave function

Ω angular speed or density parameter or longitude of ascending node
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Table 6.5 Lower case Roman letters and the quantities they represent

a acceleration or semi-major axis or dimensionless scale factor

b width or semi-minor axis or impact parameter or bias parameter or Galactic latitude

c speed of light

d distance

e proton charge or eccentricity or 2.718...

f general function or mass function or focal length

g acceleration due to gravity or surface gravity or number of polarizations or metric tensor

h Planck constant or relative Hubble constant

i integer index or inclination angle or imaginary number

j angular momentum

k Boltzmann constant or curvature or wave number or Love number

l length or path length or semi-latus rectum or Galactic longitude

m mass or apparent magnitude or magnification or magnetic dipole moment

n number density or quantum concentration

p momentum or probability or pressure or planet radius/stellar radius or geometric albedo

q charge or mass ratio or deceleration parameter

r radius or radial coordinate

s displacement or standard error or degrees of freedom or spacetime separation

t time

u initial speed or atomic mass unit

v speed

w equation of state parameter

x position or coordinate

y position or coordinate

z position or coordinate or redshift
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Table 6.6 Upper case Roman letters and the quantities they represent

A area or atomic mass or amplitude or absorption or Bond albedo or action

B magnetic field strength or blackbody radiation formula

C integration constant or circumference

D diameter or dissipation rate

E, E energy or electric field strength or event

F force or flux or electromagnetic field tensor

G gravitational constant or viscous torque or Einstein tensor

H Hubble constant or scale height

I moment of inertia or intensity or image scale or ionization energy

J angular momentum or electric current density

K Gaussian curvature or constant in degenerate gas equation of state

L, L luminosity or length interval or angular momentum it or Lagrangian

M mass or absolute magnitude or angular magnification

N , N number or column density

P pressure or period or probability or power or four momentum

Q charge or energy released or tidal dissipation parameter

R radius or scale factor or fusion rate or Riemann curvature tensor or Ricci tensor

S flux or nuclear S-factor or surface

T temperature or time period or generic tensor or energy momentum tensor

U four velocity

V volume or potential energy

W work or equivalent width

X mass fraction

Y number of electrons per nucleon

Z atomic number
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Solutions to exercises

Exercise 1.1 (a)

t

(
2− k

t2

)
= 2t− kt

t2
= 2t− k

t

(b)

(a− 2b2) = (a− 2b)(a − 2b) = a(a− 2b)− 2b(a− 2b)

= a2 − 2ab− 2ba+ 4b2 = a2 − 4ab+ 4b2

Exercise 1.2 (a)

2xy

z
÷ z

2
=

2xy

z
× 2

z
=

4xy

z2

(b)

a2 − b2

a+ b
=

(a+ b)(a− b)

a+ b
= a− b

(c)

2

3
+

5

6
=

2× 6

3× 6
+

5× 3

6× 3

=
12

18
+

15

18
=

27

18
=

27/9

18/9
=

3

2

(d)

a

b
− c

d
=
ad

bd
− cb

db
=
ad− cb

bd

Exercise 1.3 (a) Since E = −GmM/r, therefore Er = −GmM and so

m = −Er/GM .

(b) Since E2 = p2c2 +m2c4 therefore E2 − p2c2 = m2c4 and so

m2 = (E2 − p2c2)/c4. Hence m = ±
√

(E2 − p2c2)/c4. Since m is declared to

be a mass, it must be positive so the negative square root is rejected on physical

grounds. Therefore m =
√

(E2 − p2c2)/c4.

(c) Since T = 2π
√
m/k therefore T 2 = (2π)2(m/k) and so m = k(T/2π)2.

Note: The solutions have been written out step by step. You may have arrived at

the correct solution in fewer steps.

Exercise 1.4 (a) Given (i) a− b = 1 and (ii) a+ b = 5, from Equation (i),

a = 1+ b, so substituting into Equation (ii), (1+ b) + b = 5, therefore 2b = 4 and

so b = 2. Therefore from (i), a = 1 + b = 1 + 2 = 3, and the solution is a = 3
and b = 2.

(b) Given (i) 2a− 3b = 7 and (ii) a+ 4b = 9, use Equation (ii) to express a in

terms of b, so a = 9− 4b then substitute this expression for a into Equation (i) to

evaluate b. This gives 2(9 − 4b)− 3b = 7, so 18− 8b− 3b = 7, which leads to

18− 7 = 11b, and therefore 11b = 11, i.e. b = 1.
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Now substitute the known value of b into either of the original equations to obtain

the value for a. Equation (ii) will be fastest, giving a = 9− 4b = 9− 4 = 5. The

solution is therefore a = 5, b = 1.

Exercise 1.5 (a) 102 × 103 = 102+3 = 105

(b) 102/103 = 102−3 = 10−1 = 1/10 = 0.1

(c) t2/t−2 = t2−(−2) = t2+2 = t4

(d) 10001/3 = 3
√
1000 = 10

(e) (104)1/2 = 104×0.5 = 102 = 100

(f) 125−1/3 = 1/ 3
√
125 = 1/5 = 0.2

(g) (x4/4)1/2 = x4×0.5/40.5 = x2/2

(h) (2 kg)2/(2 kg)−2 = 22 kg2/2−2 kg−2 = 22 × 22 × kg2 × kg2 = 4× 4 kg4 =
16 kg4

Note: These solutions have been written out using many steps as an aid to your

working, but in many cases you may have been able to write down the answer

immediately. In laying out calculations, you may include as many (or as few)

steps as you feel comfortable with.

Exercise 1.6 (a) Using Equation 1.11,

x = (−10 ±
√

102 − (4× 4×−6))/(2 × 4) = (−10 ±
√
196)/8

= (−10 ± 14)/8. So x = −3 or x = 1/2. The quadratic equation may therefore

be written as 4(x+ 3)(x− 0.5) = 0 or equivalently (multiplying through by 4) as

(x+ 3)(4x − 2) = 0.

(b) Using Equation 1.11, x = (0.9 ±
√

(−0.9)2 − (4× 1×−17.86))/(2 × 1)

= (0.9 ±
√
72.25)/2 = (0.9 ± 8.5)/2. So x = 4.7 or x = −3.8. The quadratic

equation may therefore be written as (x− 4.7)(x + 3.8) = 0.

(c) This quadratic equation may be solved simply writing 8x2 = 50, so

x = ±
√

50/8. Hence the solutions are x = ±2.5. The quadratic equation

may therefore be written as 8(x + 2.5)(x − 2.5) = 0, or equivalently

(2x+ 5)(4x − 10) = 0.

Exercise 1.7 1 light-year = 9.46 × 1015 m, so 4.2 light-years

= 4.2 × 9.46× 1015 m = 39.732 × 1015 m.

Converting to kilometres, this is 39.732 × 1012 km. Writing this in scientific

notation, it becomes 3.9732 × 1013 km, and rounding to 2 significant figures, the

final answer is 4.0 × 1013 km.

Note: This result is given to 2 s.f., the same precision as for the distance in

light-years. For further discussion of this point, see Section 1.7.

Exercise 1.8 (a) 6093 km/500 s = 12.2 km s−1 = 1.22 × 101 km s−1.

(b) 2.0× 1018 km/8.86 × 1015 s = 230 km s−1 = 2.3× 102 km s−1.

(c) 3000 km/0.01 s = 300 000 km s−1 = 3× 105 km s−1.

In part (c), convention suggests that the distance is known to 4 s.f., i.e. it lies

between 3000.5 km and 2999.5 km. The time, however, appears to be quoted to

just 1 s.f., so the speed should be given to the same precision: 3× 105 km s−1 is

the only unambiguous way to write that result.
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Exercise 1.9 (a) The mean value 〈mv〉 is found by adding all of

the magnitude values and dividing by the number of values (ten). Thus

〈mv〉 = (220.0)/10 = 22.0.

(b) The measurements are spread over a range from 21.6 to 22.3, a range of about

±0.35 magnitudes. It is conventional to quote the uncertainty in a measured value

as about 2/3 of the spread, in recognition of the fact that values from the extremes

of the range are not very likely. So in this case we would estimate the uncertainty

as 2/3× (±0.35 magnitudes), which is ±0.2 magnitudes, to one significant figure.

(c) The standard deviation is calculated using Equation 1.12. The mean value was

calculated in part (a). The sum of the squared deviations of the measurements

from the mean is 0.40 magnitudes2. The mean of the squared deviations is

therefore (0.40 magnitudes2)/10 = 0.04 magnitudes2, and the standard deviation

(calculated by taking the square root of this) is 0.2 magnitudes. Note that the size

of the uncertainty estimated in (b) is approximately the same as the standard

deviation, and this is why it is often sufficient to use the simpler 2/3 spread

procedure.

(d) The uncertainty in the mean magnitude is σm = sn/
√
n =

0.2/
√
10 ∼ 0.06 magnitudes.

Exercise 1.10 (a) log10 1000 = 3, since 1000 = 103

(b) log10 0.001 = −3, since 0.001 = 10−3

(c) log10
√
10 = 0.5, since

√
10 = 100.5

Exercise 1.11 (a) (i) log10 200 = log10(2× 102) = log10 2 + log10 10
2 =

0.301 + 2 = 2.301

(ii) log10 32 = log10(2
5) = 5× log10 2 = 5× 0.301 = 1.505

(iii) log10 0.25 = log10(2
−2)= −2× log10 2 = −2× 0.301 = −0.602

(b) (i) log10 3 + log10 8 = log10(3× 8) = log10 24

(ii) log10 4− log10 3− log10 5 = log10 (4/(3 × 5)) = log10(4/15)

(iii) 3 log10 2 = log10(2
3) = log10 8

Exercise 1.12 You could plot U against x, this would give a curve (more

specifically a parabola, Figure S1.1a) since U depends linearly on x2 (not x). A

smooth curve would certainly suggest a simple relationship between U and x, but

just by looking at a curve, it is difficult to be sure of its exact shape. To test

equations, therefore, it is always best to plot straight-line graphs. In this case, a

graph of U against x2 should give a straight line, with gradient k/2 and intercept c
on the U -axis (Figure S1.1b). According to the question, x is the independent

variable; U is therefore plotted along the vertical axis.
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(a)
0

c

U

x

x2
(b)

0

c

U

gradient 1
2 k

Figure S1.1 Two ways of plotting

U = kx2/2 + c.

Exercise 1.13 (a)

90◦ =
π

2
radians

30◦ =
π

6
radians

180◦ = π radians

(b)

π

8
radians =

180◦

8
= 22.5◦

3π

2
radians =

3× 180◦

2
= 270◦

Exercise 1.14 At a distance of 1.0 × 1017 m away from the star, a detector of

unit area (i.e. 1 m2) subtends a solid angle of 1.0 m2/(1.0× 1017 m)2 steradians =

1.0 × 10−34 sr. The power per unit area received by the detector in this particular

frequency range is therefore

(1.4 × 106 W sr−1)× (1.0× 10−34 sr)/1 m2 = 1.4× 10−28 W m−2

Exercise 1.15 We can construct a right-angled triangle as shown in

Figure S1.2. Clearly the Sun’s radius subtends an angle of (31.9′/2) = 15.95′,
and 15.95′ is equivalent to (15.95/60.0) = 0.2658◦. So we can write

tan 0.2658◦ = R/(1.50 × 1011 m), from which R = 6.96 × 108 m and the

diameter of the Sun is therefore 2× 6.96 × 108 m = 1.39 × 109 m.
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Sun

R

Earth
1.50 ×  10 11 m

15.95′

Figure S1.2 The disc of the Sun subtends an angle of 31.9′ at the Earth’s orbit.

Exercise 1.16 (a) The amplitude of the velocity is A = 20.0 km s−1

(b) The period of the motion is P = 8.0 days

(c) The frequency of the motion is f = 1/P = (1/8.0) days−1 = 0.125 days−1 or

1/(8.0 × 24× 3600) s−1 = 1.4× 10−6 Hz.

(d) The angular frequency of the motion is ω = 2π/P =

2π/(8.0 × 24× 3600) rad s−1 = 9.1× 10−6 rad s−1.

Exercise 1.17 (a) sin−1(2/
√
5) = 63.4◦.

(b) The hypoteneuse has a relative length of
√
5 units and one of the other sides

of the triangle has a relative length of 2 units. By Pythagoras’s theorem, the

square of the relative length of the third side is given by (
√
5)2 − 22 = 5− 4 = 1.

So the relative length of the third side is
√
1 = 1 unit. The three sides therefore

have lengths in the ratio 1:2:
√
5.

(c) The tangent of the smallest angle in the triangle (i.e. 90◦ − 63.4◦ = 26.6◦) is

given by 1/2 = 0.5.

Exercise 1.18 The x-component of the force vector is given by

Fx = F cos θx

= (3.50 × 1022 N)× cos 30◦

= 3.03 × 1022 N

and the y-component of the force vector is given by

Fy = F cos θy

= (3.50 × 1022 N)× cos 60◦

= 1.75 × 1022 N

(Notice that θx + θy = 90◦ since the axes must be at right angles to each other.)

Exercise 1.19 The magnitude of the position vector is given by

a = (a2x + a2y)
1/2

= (0.902 + 1.202)1/2 × 1011 m

= 1.50 × 1011 m

It represents the distance of the Sun from the Earth.

Exercise 1.20 (a) a · a = a2, a positive scalar, since cos 0 = 1.
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(b) b× b = 0, i.e. it vanishes since sin 0 = 0. The vector (cross) product of any

parallel vectors vanishes.

Exercise 1.21 The range (r) coordinate is given by

r = (x2 + y2 + z2)1/2

= (1.22 + 1.62 + 0.02)1/2 × 1010 m = 2.0× 1010 m

The elevation (θ) coordinate is found from cos θ = z/r, but since z = 0.0, clearly

cos θ = 0.0 and so θ = 90◦.

Finally the azimuthal (φ) coordinate is found from

sinφ = y/(r sin θ)

= (1.6 × 1010 m)/(2.0 × 1010 m × sin 90◦) = 0.80

so φ = 53◦. The spherical coordinates of the star are therefore

(2.0 × 1010 m, 90◦, 53◦).

Exercise 1.22 Temperature and pressure within a star are scalar fields – they

can be represented simply by a number at each point inside the star. Gravity and

magnetic field are vector fields – they have a magnitude and a direction at each

point inside the star.

Exercise 1.23 The matrix PQ is a 3× 3 matrix whose elements are given by

PQ =




(1× 1) + (0×−1) + (1× 0) (1×−1) + (0× 0) + (1× 1) (1× 1) + (0×−1) + (1× 0)
(0× 1) + (−1×−1) + (0× 0) (0×−1) + (−1× 0) + (0× 1) (0× 1) + (−1×−1) + (0× 0)
(1× 1) + (0×−1) + (1× 0) (1×−1) + (0× 0) + (1× 1) (1× 1) + (0×−1) + (1× 0)




So the resulting matrix is

PQ =




1 0 1
1 0 1
1 0 1




Similarly, the matrix QP is a 3× 3 matrix whose elements are given by

QP =




(1× 1) + (−1× 0) + (1× 1) (1× 0) + (−1×−1) + (1× 0) (1× 1) + (−1× 0) + (1× 1)
(−1× 1) + (0× 0) + (−1× 1) (−1× 0) + (0×−1) + (−1× 0) (−1× 1) + (0× 0) + (−1× 1)
(0× 1) + (1× 0) + (0× 1) (0× 0) + (1×−1) + (0× 0) (0× 1) + (1× 0) + (0× 1)




so the resulting matrix is

QP =




2 1 2
−2 0 −2
0 −1 0




Clearly PQ 6= QP .

Exercise 1.24 (a) |A| = (2× 5)− (4× 3) = −2.

(b) |B| = 1(3× 3− 4× 2)− 2(2× 3− 4× 1)+3(2× 2− 3× 1) = 1− 4+3 = 0.

The matrix is singular.

Exercise 2.1 Moving at 33 km s−1, Tau Ceti would cover a path length of

(33 km s−1 × 3600 seconds per hour × 24 hours per day × 365 days per year) =
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1.04× 109 km in one year. If the angle subtended by a length of 1.04× 109 km at

a distance of 1.12 × 1014 km away is θ radians, then

tan θ = (1.04 × 109 km)/(1.12 × 1014 km) = 9.29 × 10−6

This is clearly a small angle, so tan θ = θ and the angle is 9.29 × 10−6 radians or

5.32 × 10−4 degrees or 1.92′′. Therefore Tau Ceti moves less than 2′′ per year.

Exercise 2.2 The magnitude of the radial velocity is

vr = (3.00 × 108 m s−1)×
(4863.5 Å − 4861.3 Å/4861.3 Å

= 1.36 × 105 m s−1

Since the difference in wavelengths is accurate to only 2 s.f., the magnitude of the

radial velocity can be stated as 140 km s−1. As the shifted wavelength is larger

than the rest wavelength, the star is moving away from the Earth. (Notice that

both a magnitude and a direction are required to fully characterize the radial

velocity of the star.)

Exercise 2.3 (a) Figure 2.8 shows that the strengths of the hydrogen and

neutral helium lines are equal at a photospheric temperature of about 20 000 K.

(b) Table 2.1 shows that a B5 star has a temperature of 17 000 K whilst an O5 star

has a temperature of 40 000 K. This indicates that a star with a temperature of

20 000 K would have a spectral classification of an early B-type, say B3.

Exercise 2.4 The effective photospheric temperature of the Sun is

Teff =
4

√
L

4πσR2

= 4

√
3.83 × 1026 W

4π(5.67 × 10−8 W m−2 K−4)(6.96 × 108 m)2
= 5772 K

The effective photospheric temperature of the Sun is therefore 5770 K (to 3 s.f.).

Exercise 2.5 We have already calculated the absolute visual magnitude

of Rigel as MRigel = −7.12. Using the same approach, the absolute visual

magnitude of Ross 154 is MRoss154 = 10.45 + 5− (5 log10 2.9) + 0 = 13.14.

So using Equation 2.12, the ratio of luminosities can be

calculated as 10(MRigel−MRoss154)/2.5 = LRoss154/LRigel so,

LRoss154/LRigel = 10(−7.12−13.14)/2.5 = 10−8.10 = 7.9× 10−9.

The ratio of the luminosity of Rigel to that of Ross 154 is therefore

LRigel/LRoss154 = 1/7.9 × 10−9 = 1.3 × 108. Therefore Rigel is about 130

million times more luminous than Ross 154.
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Exercise 2.6 Using Equation 2.7,

L ≈ 4πR2σT 4

≈ 4π(3.5 × 6.96 × 108 m)2

× (5.67 × 10−8 W m−2 K−4)× (14 500 K)4

≈ 1.87 × 1029 W

= [(1.87 × 1029)/(3.83 × 1026)] L⊙

= 488 L⊙

Given that the luminosity depends on the fourth power of the temperature, which

is here given only roughly, the luminosity is close enough to that in Table 2.4.

Exercise 2.7 (a) Light-gathering power is proportional to (aperture

diameter)2, so the ratio of light-gathering powers for the two telescopes is

(5.0/1.0)2 = 25.

(b) The (theoretical) limit of angular resolution is inversely proportional to

the aperture of the objective lens or objective mirror. Thus, a telescope with

Do = 5 m can theoretically resolve two stars with an angular separation five

times smaller than a telescope with Do = 1 m (neglecting air turbulence and

aberrations). In practice, of course, for ground-based telescopes, atmospheric

seeing is usually the limiting factor.

Exercise 3.1 The typical timescale for the X-ray flux to double is

∼ 104 seconds. The radius of the region producing the radiation must be less than

the distance light can travel in this time. Hence, using Equation 3.7,

Rmax ∼ 3.00 × 108 s−1 × 104 s = 3× 1012 m

This corresponds to only about 20 AU.

Exercise 3.2 (a) There are no such ranges, all the FRW models are consistent

with the cosmological principle which demands homogeneity and isotropy.

(b) All ranges of k and Λ allow a big bang, but k = +1 models with 0 < Λ < ΛE

allow the possibility of universes that began without a big bang. The case k = +1,

Λ = ΛE allows the possibility that the universe might be static (hence no big

bang) or that there might not have been a big bang in a non-static universe.

Among the limiting cases that arise as the density approaches zero, there are cases

in which the big bang happened an infinitely long time ago.

(c) This is possible for k = +1 and 0 < Λ ≤ ΛE

(d) There are no ranges that allow the big bang to be associated with a unique

point in space. Such an association would violate the cosmological principle.

Take good note of this since it is a widespread misconception to suppose that

the big bang was the ‘explosion’ of a dense primeval ‘atom’ located at some

particular point in space. Rather than thinking of the big bang as an event in

spacetime you should think of it as giving rise to spacetime.

(e) This is true in any model with k = 0.

(f) This is true in any model with k = +1.

(g) This is true in all models with k = 0 or −1. Of course, due to the finite speed

of light we can have no direct observational knowledge of those parts of the

Universe that are so distant that light emitted from them has not yet reached us.
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Exercise 3.3 The relationship between temperature and scale factor is given by

Equation 3.20, T ∝ 1/R(t). Thus the relationship between the temperature of the

background radiation at the present time T0 and that at the time of last scattering

Tlast is

Tlast
T0

=
R(t0)

R(tlast)

where tlast is the time at which the last scattering of photons occurred. The

relationship between redshift and scale factor is given by Equation 3.11. In this

case, the time at which the photon is observed is t0 and the time at which the

photon was emitted is tlast, so Equation 3.11 can be written as

z =
R(t0)

R(tlast)
− 1

and so

z =
Tlast
T0

− 1

We know that Tlast = 3000 K and T0 ∼ 2.7 K, so

z =
3000

2.7
− 1 ∼ 1100

So the redshift at which the last scattering of cosmic background photons occurred

is 1.1 × 103 (to 2 significant figures).

Exercise 3.4 Following the same reasoning as used in the answer to the

previous exercise, the redshift z is related to the temperature Tem of the

background radiation at that redshift by

z =
Tem
T0

− 1

This can be rearranged to give

Tem = T0(z + 1)

Inserting the given values leads to

Tem = (2.73 K)× (2.5 + 1) = 9.56 K

So, their measurement of the temperature of the cosmic microwave background

would be 9.6 K (to 2 significant figures). (Although we don’t have any

communication with astronomers anywhere else in the Universe, a similar

principle applies to a real observational technique: it is possible to measure the

temperature of the cosmic background radiation as experienced by Lyman α
clouds at redshifts of z ∼ 2. Such measurements, which are based on detailed

analysis of spectral lines, show that the temperature of the cosmic background

does increase with redshift in this way.)

Exercise 3.5 (a) Using Equation 3.22

q0 =
Ωm,0

2
− ΩΛ,0

=
0.27

2
− 0.73 = −0.595
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(b) Using Equation 3.18

ρcrit =
3H2

0

8πG

=
3×

(
70.4 km s−1 Mpc−1

)2

8× π ×
(
6.67 × 10−11 N m2 kg−2

)

=
1.557 × 10−35 s−2

1.676 × 10−9 m3 s−2 kg−1 = 9.29 × 10−27 kg m−3

This is equivalent to about 5 hydrogen atoms per cubic metre.

Exercise 4.1 (a) We can write F (r) = k/r as F (r) = kr−1. So, using the

rule that

d(atn)

dt
= natn−1

we have

dF

dr
= (−1)× kr−1−1 = −kr−2 = − k

r2

(b) This time we use the product rule,

d(uv)

dt
= u

dv

dt
+ v

du

dt

where u = ax2 and v = sin(bx). Now

d(ax2)

dx
= 2ax

and
d[sin(bx)]

dx
= b cos(bx)

so
dG

dx
= [ax2 × b cos(bx)] + [sin(bx)× (2ax)]

Exercise 4.2 Following the hint given at the end of the question, we equate the

new value of y after one half-life with half the original value, i.e.

exp[−(t+ τ1/2)/τ ] = 0.5 exp(−t/τ)

Taking natural logarithms, we obtain

(−t− τ1/2)/τ = loge 0.5− (t/τ)

and multiplying both sides by τ gives

(−t− τ1/2) = τ × loge 0.5− t

then adding t to both sides gives

−τ1/2 = τ × loge 0.5

and therefore

τ1/2/τ = − loge 0.5

Finally, recall that loge(1/x) = − loge x, so

τ1/2/τ = loge(1/0.5) = loge 2 = 0.69.
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Now reading from the graph, the time for the radioactivity to halve is 5600

years, and the time for it to reach a factor 1/e (= 0.37) is 8100 years. The ratio

τ1/2/τ = 5600/8100 = 0.69, as expected.

Exercise 4.3 (a) As indicated in the question, we first put p = cβ sin θ and

q = (1− β cos θ)−1 so that V = pq.

Now, using the rules from Table 4.1, dp/dθ = cβ cos θ.

To calculate dq/dθ we first put u = 1− β cos θ so that q = u−1. Now, by the

chain rule,

dq

dθ
=

dq

du
× du

dθ

So
dq

dθ
= (−u−2)× (−β ×− sin θ)

or
dq

dθ
=

−β sin θ
(1− β cos θ)2

Now we can finally apply the product rule:

d(pq)

dθ
= p

dq

dθ
+ q

dp

dθ

So

dV

dθ
= (cβ sin θ)× −β sin θ

(1− β cos θ)2
+

1

(1− β cos θ)
× cβ cos θ

dV

dθ
=

−c(β sin θ)2

(1− β cos θ)2
+

cβ cos θ

(1− β cos θ)

Finding a common denominator in order to add the two terms, this becomes

dV

dθ
=

−c(β sin θ)2 + cβ cos θ (1− β cos θ)

(1− β cos θ)2

=
−(β sin θ)2 + β cos θ − (β cos θ)2

(1− β cos θ)2
× c

=
−β2(sin2 θ + cos2 θ) + β cos θ

(1− β cos θ)2
× c

We recall the rule that sin2 θ + cos2 θ = 1 for any value of θ (this comes from

Pythagoras’s theorem) and therefore

dV

dθ
=

−β2 + β cos θ

(1− β cos θ)2
× c

dV

dθ
=

β(cos θ − β)

(1− β cos θ)2
× c

(b) The angle at which the maximum value of V is observed is found by setting

dV /dθ = 0. So

β(cos θ − β)

(1− β cos θ)2
× c = 0

and therefore cos θ − β = 0, so θ = cos−1 β.
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(Note: The fact that this complicated question resulted in a simple answer at the

end is a good indication that the calculation has been carried out correctly!)

Exercise 4.4 (a) We write f(θ) = sin θ and therefore f ′(θ) = cos θ. The

first-order Maclaurin expansion is therefore,

f(θ) = f(0) + θf ′(0) = sin 0 + θ cos 0

Since sin 0 = 0 and cos 0 = 1, this becomes

f(θ) = θ

which is the small-angle approximation.

(b) For a slightly more accurate expansion we will need to calculate more terms

in the expansion. So first we note that f ′′(θ) = − sin θ and f ′′′(θ) = − cos θ.

Therefore

f(θ) = f(0) + θf ′(0) + θ2f ′′(0)/2 + θ3f ′′′(0)/6

f(θ) = sin 0 + θ cos 0− θ2 sin 0/2 − θ3 cos 0/6

Once again we note that sin 0 = 0 and cos 0 = 1, so

f(θ) = θ − θ3/6

This is a slightly more accurate approximation to sin θ and will apply equally well

for somewhat larger angles.

Exercise 4.5 (a)

∂y(x, t)

∂x
=

∂

∂x
A sin(kx+ ωt)

= Ak cos(kx+ ωt)

(b)

∂y(x, t)

∂t
=

∂

∂t
A sin(kx+ ωt)

= Aω cos(kx+ ωt)

(c)

∂2y(x, t)

∂x2
=

∂

∂x

(
∂y(x, t)

∂x

)

=
∂

∂x
[Ak cos(kx+ ωt)]

= −Ak2 sin(kx+ ωt)

= −k2y(x, t)
∂2y(x, t)

∂t2
=

∂

∂t

(
∂y(x, t)

∂t

)

=
∂

∂t
[Aω cos(kx+ ωt)]

= −Aω2 sin(kx+ ωt)

= −ω2y(x, t)
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Exercise 4.6 The gradient of the scalar field ∇h represents the way in which

the altitude changes with distance in each direction – the slope of the land in a

given direction at each point.

Exercise 4.7 Given

x = A sin(ωt+ φ)

so

dx

dt
= Aω cos(ωt+ φ)

and

d2x

dt2
= −Aω2 sin(ωt+ φ)

Substituting into this last equation using the original proposed solution, we have

d2x

dt2
= −ω2x

Comparing this result with the original differential equation, md2x/dt2 = −kx, it

is clear that the two equations have the same form provided that ω2 = k/m, as

required.

Exercise 4.8 (a) Using the rule that
∫
atn dt =

atn+1

n+ 1
+ C

in this case the power on the variable r is n = −2, so
∫
GMm

r2
dr = −GMm

r
+ C

(b) Using the rule that
∫

(u+ v) dt =

∫
u dt+

∫
v dt

in this case
∫ (

b expx+
1

x

)
dx = b expx+ loge x+ C

Exercise 4.9 Using the suggested substitution, x = a sin θ, we have

dx/dθ = a cos θ. So substituting into the original integral:

x=a∫

x=0

1√
a2 − x2

dx =

x=a∫

x=0

1√
a2 − a2 sin2 θ

× a cos θ dθ

=

x=a∫

x=0

a cos θ

a
√

1− sin2 θ
dθ
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Now, since sin2 θ + cos2 θ = 1, so 1− sin2 θ = cos2 θ. Making this substitution

inside the square root gives

x=a∫

x=0

1√
a2 − x2

dx =

x=a∫

x=0

a cos θ

a
√
cos2 θ

dθ

=

x=a∫

x=0

a cos θ

a cos θ
dθ

=

x=a∫

x=0

dθ = [θ]x=a
x=0

Reversing the original substitution we have θ = sin−1(x/a), so the integral

becomes
x=a∫

x=0

1√
a2 − x2

dx =
[
sin−1

(x
a

)]x=a

x=0

= sin−1
(a
a

)
− sin−1

(
0

a

)

= sin−1(1)− sin−1(0)

Since sin−1(1) = 90◦ or π/2 radians and sin−1(0) = 0, the final answer is simply

π/2.

Exercise 4.10 Putting u = loge x and dv = dx we have du/dx = 1/x and

v = x. So we can write∫
u dv = uv −

∫
v du

∫
loge x dx = x loge x−

∫
x

dx

x

= x loge x−
∫

dx

= x loge x− x+ C

Exercise 4.11 The mass of the star is given by

Mstar =

∫ r=R

r=0

∫ φ=2π

φ=0

∫ θ=π

θ=0

R2ρ0r
2 sin θ

r2
dr dφ dθ

which simplifies immediately to

Mstar =

∫ r=R

r=0

∫ φ=2π

φ=0

∫ θ=π

θ=0
R2ρ0 sin θ dr dφ dθ

First integrating with respect to the angle θ:

Mstar =

∫ r=R

r=0

∫ φ=2π

φ=0

[
−R2ρ0 cos θ

]θ=π

θ=0
dr dφ

=

∫ r=R

r=0

∫ φ=2π

φ=0
2R2ρ0 dr dφ
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then integrating with respect to the angle φ:

Mstar =

∫ r=R

r=0

[
2R2ρ0φ

]φ=2π

φ=0
dr

=

∫ r=R

r=0
4πR2ρ0 dr

and finally integrating with respect to r:

Mstar =
[
4πR2ρ0r

]r=R

r=0

= 4πρ0R
3

Exercise 5.1 (a) Using Equation 5.3, the distance travelled is found as

sx = uxt+
1
2axt

2 = 0 + 0.5× (5.0 m s−2)× (10 s)2 = 250 m.

(b) Using Equation 5.4, the speed at this time is found as vx = ux + axt =

0 + (5.0 m s−2)× (10 s) = 50 m s−1.

Exercise 5.2 (a) The angular speed of the neutron star is

ω =
2π

P

=
2π

(10× 24× 3600 s)

= 7.27 × 10−6 s−1

So, the magnitude of the instantaneous velocity is

v = rω

= (3.7 × 1010 m)× (7.27 × 10−6 s−1)

= 2.7 × 105 m s−1 or 270 km s−1

(b) The magnitude of the centripetal acceleration is

a = rω2

= (3.7 × 1010 m)× (7.27 × 10−6 s−1)2

= 2.0 m s−2

Exercise 5.3 Imagine that the astronaut in the space station is at the origin of

frame of reference A, and spaceship X is at the origin of frame of reference B.

Then frames of reference A and B are in standard configuration with V = 3c/4.

The x-component of the velocity of spaceship Y in frame of reference A is

vx = −3c/4. The question then becomes: what is the x′-component of the
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velocity of spaceship Y in frame of reference B? From Equation 5.29,

v′x =
vx − V

1− V vx
c2

=
−(3c/4) − (3c/4)

1− (−9c2/16c2)

=
−6c/4

1 + (9/16)

= −6c

4
× 16

25

= −96c

100

The negative sign indicates that spaceship X measures spaceship Y to be racing

towards it at 96% of the speed of light.

Exercise 5.4 The work done on the particle is equal to its change in kinetic

energy. In this case

W = 0.5× 10−6 kg × (102 − 52) m2 s−2

= 3.75 × 10−5 J or about 40µJ

Exercise 5.5 Equation 5.33 states that EGR = −GmM
r and Equation 5.35 can

be written in this case as F = − dEGR

dr . So differentiating Equation 5.33 with

respect to r gives

dEGR

dr
= −GMm

d

dr
(r−1)

= −GMm× (−r−2)

=
GMm

r2

So the magnitude of the force of gravity is −GMm/r2, where the minus sign

indicates that the force of gravity acts in the opposite direction to that in which r
increases (i.e. towards the centre of the body of mass M). This is clearly just

Newton’s law of universal gravitation.

Exercise 5.6 If the relativistic translational kinetic energy of a particle is equal

to its mass energy, then Equation 5.40 becomes

EKE =
mc2√
1− v2

c2

−mc2

mc2 =
mc2√
1− v2

c2

−mc2

2mc2 =
mc2√
1− v2

c2
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√
1− v2

c2
=

1

2

1− v2

c2
=

1

4
v2

c2
=

3

4

v =

√
3c

2

So the speed of the particle is 2.6 × 108 m s −1.

Exercise 5.7 (a) The moment of inertia of an annulus will be greater than that

of a uniform disc of the same mass, because most of the mass will be further away

from the central axis.

(b) Since the magnitude of angular momentum is L = Iω and the rotational

kinetic energy is Erot =
1
2Iω

2, but ω is the same for both the disc and the annulus,

then the annulus will have the greater angular momentum and rotational kinetic

energy.

Exercise 5.8 (a) The average density is simply the number of atoms per unit

volume multiplied by the mass per atom, i.e.

ρ = (1016 atoms cm−3)× (1.67 × 10−27 kg)

= 1.67 × 10−11 kg cm−3

(b) The average translational kinetic energy of the molecules is

〈EKE〉 = 3kT/2

= 1.5 × (1.38 × 10−23 J K−1)× 5800 K

= 1.2 × 10−19 J

This is equivalent to 0.75 eV.

(c) The pressure in the gas is found from

P = NkT/V

= (1016)× (1.38 × 10−23 J K−1)× 5800 K/(10−6 m3)

= 800 Pa

where we have used the fact that 1 cm3 = (10−2 m)3 = 10−6 m3 in order to get the

value of V .

This is less than 1% of normal atmospheric pressure at sea-level on Earth.

Exercise 5.9 The transitions which give rise to lines of the Balmer series all

have a lowest energy level corresponding to n = 2, or E2 = −3.40 eV. The first

four lines of the Balmer series involve transitions with a highest energy level of

n = 3, 4, 5 and 6 or En = −1.51 eV, −0.85 eV, −0.54 eV and −0.38 eV

respectively. So the energies of the photons corresponding to each of these
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transitions are

E3 − E2 = (−1.51 + 3.40) eV = 1.89 eV

E4 − E2 = (−0.85 + 3.40) eV = 2.55 eV

E5 − E2 = (−0.54 + 3.40) eV = 2.86 eV

E6 − E2 = (−0.38 + 3.40) eV = 3.02 eV

Exercise 5.10 Using ∆E∆t ≥ ~/2 since ∆t ≃ 10−8 s, ∆E ≥ 5.5 × 10−27 J.

This short, but finite, time implies an indeterminacy in the energy of the excited

atomic states. Such an indeterminacy in energy will result in a corresponding

indeterminacy in the frequency and wavelength of spectral lines. (Comment: The

intrinsic width, or spread, ∆λ, of the wavelength of spectral lines due to this

effect, is called the ‘natural width’of the spectral lines.)

Exercise 5.11

(a) Since the total energy of the confined particle is 9h2/(8meD
2), the

wavefunction describing its behaviour must be characterized by the number

n = 3. Hence, there are three half-wavelengths of the probability wave between

the confining walls.

(b) The electron is most likely to be detected where |ψn=3|2 is a maximum.

There are three such maxima located at x = 0 and at x = ±D/3.

(c) When an electron makes a transition between two energy levels, a single

photon is ejected with an energy equal to the spacing of the two levels. So, in this

case, a single photon would be ejected with energy

E =
9h2

8meD2
− h2

8meD2
=

h2

meD2

Exercise 5.12 Since there are four more α-decays, the total decrease in mass

number is (4× 4) = 16, and the total decrease in atomic number is (4 × 2) = 8.

So the resultant nucleus has A = 230 − 16 = 214 and Z = 90 − 8 = 82. The

element with atomic number 82 is lead, as noted in the question, so the resulting

nucleus is the lead isotope 214
82Pb.

Exercise 5.13 The nitrogen isotope will undergo β−-decay as follows:

16
7N → 16

8O + e− + ν̄e

Since the resulting nucleus has an atomic number of eight, this is an isotope of

oxygen.

Exercise 5.14 The phosphorus isotope will undergo β+-decay as follows:

30
15P → 30

14Si + e+ + νe

Since the resulting nucleus has an atomic number of fourteen, this is an isotope of

silicon.

Exercise 5.15 In the process of γ-decay, the number of protons and neutrons in

the nucleus remains unchanged. So the atomic number and mass number of the

barium nucleus after the γ-decay are the same as they were before, namely 56 and

137 respectively.
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Exercise 5.16 For the first stage of the reaction:

4
2He + 4

2He → 8
4Be

The energy deficit on the right-hand side is 3.7274 GeV + 3.7274 GeV –

7.4549 GeV = –0.0001 GeV or –0.1 MeV. Since the energy of the products is

more than that of the reactants, this reaction is not energetically favoured.

The second stage of the reaction involves:

8
4Be + 4

2He → 12
6C

The energy surplus on the right-hand side is 3.7274 GeV + 7.4549 GeV –

11.1749 GeV = +0.0074 GeV or +7.4 MeV. Since the energy of the products is

less than that of the reactants, this reaction is energetically favoured.

The net energy released in the triple-alpha process is therefore –0.1 MeV +

7.4 MeV = +7.3 MeV per carbon-12 nucleus produced.

Exercise 5.17 (a) The cyclotron radius of the electron is given by r = mv/qB
which in this case gives

r =
9.1 × 10−31 kg × 3.0× 106 m s−1

1.6 × 10−19 C × 3.0× 108 T

= 5.7× 10−14 m

(b) The period for the electron to complete one orbit is given by the

circumference of the orbit divided by the electron’s speed, i.e. P = 2πr/v,

so the frequency at which the electron orbits is simply f = 1/P = v/2πr.

However, since we know that r = mv/qB, the cyclotron frequency becomes

f = (v/2π) × (qB/mv) = qB/2πm, which depends only on the magnetic field

strength, and is independent of the electron’s speed.

f = qB/2πm

= (1.6 × 10−19 C × 3.0× 108 T)/(2π × 9.1× 10−31 kg)

= 8.4 × 1018 Hz

Exercise 5.18 (a) From Equation 5.92, the longest wavelength spectral line

in each series corresponds to the line with the lowest photon energy (since

Eph ∝ 1/λ).

The lowest energy line in the Lyman series corresponds to a transition between

the n = 1 energy level and the n = 2 energy level. The energy of a photon

corresponding to such a transition is therefore (−3.40 + 13.60) eV = 10.20 eV.

The wavelength corresponding to this photon energy is

λ =
hc

Eph

=
(4.14 × 10−15 eV Hz−1)× (3.00 × 108 m s−1)

10.20 eV

= 1.22 × 10−7 m or 122 nm

From Figure 5.25 this is in the ultraviolet part of the electromagnetic spectrum.
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(b) The lowest energy line in the Paschen series corresponds to a transition

between the n = 3 energy level and the n = 4 energy level. The energy of a

photon corresponding to such a transition is therefore (−0.85 + 1.51) eV =

0.66 eV. The wavelength corresponding to this photon energy is

λ =
hc

Eph

=
(4.14 × 10−15 eV Hz−1)× (3.00 × 108 m s−1)

0.66 eV

= 1.88 × 10−6 m or 1.88 µm

From Figure 5.25 this is in the infrared part of the electromagnetic spectrum.

Exercise 5.19 From Equations 5.95 and 5.96

νBν(T ) = ν ×
(
2hν3

c2

)
× 1

exp
(
hν
kT

)
− 1

=

(
2hν4

c2

)
× 1

exp
(
hν
kT

)
− 1

and

λBλ(T ) = λ×
(
2hc2

λ5

)
× 1

exp
(

hc
λkT

)
− 1

=

(
2hc2

λ4

)
× 1

exp
(

hc
λkT

)
− 1

Now we simply replace ν in the first equation by c/λ, to give

νBν(T ) =

(
2hc4

λ4c2

)
× 1

exp
(

hc
λkT

)
− 1

=

(
2hc2

λ4

)
× 1

exp
(

hc
λkT

)
− 1

which is identical to the second equation as required.

Exercise 5.20 (a) Bν reaches a maximum at a wavelength given by

λmax = 5.1× 10−3 m K/108 K

= 5.1× 10−11 m or 0.051 nm

This corresponds to a photon energy of

Eph = hc/λ

= (6.63 × 10−34 J s)× (3.00 × 108 m s−1)/(5.1 × 10−11 m)

= 3.90 × 10−15 J

= (3.90 × 10−15/1.60 × 10−19) eV

= 2.44 × 104 eV

= 24 keV (to 2 s.f.)
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(b) Bλ reaches a maximum at a wavelength given by

λmax = 2.9× 10−3 m K/108 K

= 2.9× 10−11 m or 0.029 nm

This corresponds to a photon energy of

Eph = hc/λ

= (6.63 × 10−34 J s)× (3.00 × 108 m s−1)/(2.9 × 10−11 m)

= 6.86× 10−15 J

= (6.86 × 10−15/1.60 × 10−19) eV

= 4.29× 104 eV

= 43 keV (to 2 s.f.)

(c) The mean photon energy of the spectrum is given by

〈Eph〉 = 2.70kT

= 2.70 × (1.38 × 10−23 J K−1)× 108 K

= 3.73 × 10−15 J

= (3.73 × 10−15/1.60 × 10−19) eV

= 2.33 × 104 eV

= 23 keV (to 2 s.f.)

(d) Photon energies of a few tens of keV, or equivalently, wavelengths of a few

hundredths of a nanometre, correspond to the X-ray part of the electromagnetic

spectrum.

239


