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Response surface experiments

Common features:

one (or more) response of interest, Y ;

several (continuous) input variables, X1, . . . ,Xq, changing whose levels

might a�ect Y ;

the opportunity to do a restricted number of experimental runs n, to
study the relationships.

Note: code −1 ≤ xri ≤ 1, r = 1, . . . , q, i = 1, . . . , n.
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The Ultra-Clean Instrument Project

Steel instruments used in (human) surgery are reused many times on

di�erent patients.

They are washed in automatic washing machines, similar to domestic

dishwashers.

To prevent cross-contamination, it is essential that all protein residues are

cleaned completely, especially given concerns about vCJD (the �human

form of mad cow disease�).
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How can ultra-clean instruments be achieved?

Guidelines exist on how to carry out cleaning; these must be adhered to.

However, it is not clear that these guidelines are su�cient, or necessary.

Experiments were to be performed to determine which aspects could be

improved and which aspects could be relaxed.
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Study Objectives

To de�ne a baseline performance for utilisation of a washer disinfector for

decontamination of reusable surgical instruments.

Seeking at least a routinely achievable 2 orders of magnitude reduction in

protein residues over current practice; to inform future standards.

Simplicity before complexity at a practical threshold is essential.

The outcome should not compromise current safety standards of toxicity,

general cleaning performance and ability to sterilize subsequently.
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The Washer
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The Washer

Factor levels can be programmed.
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The Washer
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The Washer
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Test Wash Loads

Instruments smeared with protein (from pig's brains).
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Test Wash Loads

Test tags included to measure wash performance.
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Test Tags
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Test Tags

Steven Gilmour (King's College London) MOODE Open University 14 / 50



Response Measurements

Residual protein measured.
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Response Measurements

Software illustrates spatial layout of protein, as well as total amount.
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First Experiment

Aim to understand which wash settings lead to better performance and

which settings do not matter.

Treatment factors:

Chemistry: 0 = water; 1 = alkili; 2 = enzymatic; 3 = non-ionic

Second wash: 0 = no; 1 = yes

Initial rinse time; Initial rinse temperature; Main wash dose; main wash

time; main wash temperature; Second wash dose; Second wash time;

Second wash temperature; Intermediate rinse time; Intermediate rinse

temperature; Final rinse time; Final rinse temperature: all quantitative.
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Polynomial response surface models

In response surface methodology (RSM), low degree polynomial regression

models are very widely used as empirical approximations:

Yi = β0 +

q∑
r=1

βrxri + εi ,

or

Yi = β0 +

q∑
r=1

βrxri +

q∑
i=1

βrrx
2

ri +

q−1∑
r=1

q∑
s=r+1

βrsxrixsi + εi ,

where ε ∼ N(0, σ2I) (normality not crucial).

All the usual regression techniques are useful.
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Response surface analysis

However, these are experiments, so not just regression.

Correlation is causation.

Simple additivity assumption of treatment and unit e�ects justi�es

model for variance structure.

We can have replicates of treatment combinations.

Nuisance variables can be designed out using an appropriate blocking

structure.

All of this depends on doing a valid randomisation (the only thing which

raises us above the level of the beasts).
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Response surface designs

Historically, �classical� designs with symmetric structures and some

replication have been widely used.

Two-level factorials (Fisher, 1925) and regular fractions (Finney, 1945), plus
centre points.

Central composite designs (Box and Wilson, 1951): add axial points at
(±α, 0, . . . , 0), etc. to the above.

Box-Behnken designs (BBDs) (Box and Behnken, 1960): three-level designs
with all points an equal distance from the centre.

Subset designs (Gilmour, 2006): combinations of points at di�erent
distances.

Fractional BBDs (Edwards and Mee, 2011; Lin et al., 2012).

Designs are not chosen explicitly to have good statistical properties.

Steven Gilmour (King's College London) MOODE Open University 20 / 50



Response surface designs

Historically, �classical� designs with symmetric structures and some

replication have been widely used.

Two-level factorials (Fisher, 1925) and regular fractions (Finney, 1945), plus
centre points.

Central composite designs (Box and Wilson, 1951): add axial points at
(±α, 0, . . . , 0), etc. to the above.

Box-Behnken designs (BBDs) (Box and Behnken, 1960): three-level designs
with all points an equal distance from the centre.

Subset designs (Gilmour, 2006): combinations of points at di�erent
distances.

Fractional BBDs (Edwards and Mee, 2011; Lin et al., 2012).

Designs are not chosen explicitly to have good statistical properties.

Steven Gilmour (King's College London) MOODE Open University 20 / 50



Optimal design criteria

Write polynomial model as Y = Xβ + ε.

Then Var(β̂) = σ2(X′X)−1.

In practice, designs are increasingly chosen, using widely available software,

to optimise:

1/|X′X|, D-optimality, to (asymptotically) minimise volume of joint

con�dence region on parameters;

tr{(X′X)−1}, A-optimality, to minimise average variance of

parameters;

tr{W(X′X)−1}, L-optimality, for linear functions of parameters;

max
x∈[−1,1]q x

′(X′X)−1x, G -optimality, for prediction;∫
x∈[−1,1]q x

′(X′X)−1xdx, I - (or V -)optimality, for prediction.
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Optimal versus Classical?

Leaving aside computational restrictions, I see no contradiction.

Classical criteria help to decide the appropriate class of designs over which

to optimize, the optimality criterion and how to implement the design.

Optimality criteria help to �nd a design which obeys the classical principles.

Any con�ict is due to computational limitations (or poor choices).
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It's the Design that Matters

The 2nd order response surface design in 4 three-level factors S3 + 4S0 was

recommended by:

Gilmour(2006) as D- and A-optimal within the class of subset designs

Edmondson (1994) by aliasing canonical contrasts

Todd (1988) who dreamt it up

For an experimenter, the method of construction is irrelevant.

Linear models analysis is conditional on X, not the method of choosing X.
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A Uni�ed Approach

How to choose a design:

Objectives lead to choice of treatment structure

Practical restrictions lead to de�nition of class of designs and

randomization scheme

When we know what we want, we choose a method of design

construction which will best meet our needs

Design for the experiment, don't experiment for the design

and choose a

program for the design, don't choose a design for the program.
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How do we analyse data from multi-factor experiments?

Many experimenters still prefer to use standard designs (regular fractional

factorial, central composite, Box-Behnken, subset), which include replicate

points, especially centre points.

Analysis:

Fit one or more polynomial models.

Use F tests to compare models of di�erent orders, test for lack of �t

and test whether the model is better than a null model.

Use t tests to test individual parameters.

Estimate the parameters.

All tests require an estimate of σ2.
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A simple design

A central composite design (CCD) for q = 2:

X1 X2

-1 -1
-1 1
1 -1
1 1
-1 0
1 0
0 -1
0 1
0 0
0 0
0 0
0 0
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Analysis of variance

Which is �correct�?

Source df MS Source df MS

Regression 5 Treatments: 8

Residual: 6 S2
p Regression 5

Lack of �t 3 Lack of �t 3

Pure error 3 S2 Pure error 3 S2

Total 11 Total 11

The right hand table emphasises the design structure and clearly identi�es

the unbiased estimator of σ2.
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Estimating Error

How should we estimate σ2?

Regression viewpoint: MSE from the model �tted.

Anova viewpoint: �pure error� MS from �tting full treatment model.

The latter is unbiased, justi�ed by a valid randomization, objective and

gives unambiguous inferences whose properties are understood.

Then optimum design criteria do not have the statistical interpretations

claimed for them, since the sizes of con�dence intervals and regions depend

on the degrees of freedom for pure error.
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Which estimate of σ2?

Inference should be carried out using the unbiased pure-error estimator of

σ2, since the biases induced by s2p are unmeasureable and the inferences are

therefore di�cult to interpret.

If carrying out inference is important, then the design should be chosen in

order to make that inference as informative as possible.

Note, however, statistical inference (beyond point estimation) is often not

the most important part of the analysis and interpretation of experimental

data.
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D-optimality

Assume that the aim is to obtain unbiased con�dence intervals or regions

of minimal length or volume (standard hypothesis tests are essentially the

same).

D-optimality minimises 1/|X′X|, which is intended to minimise the volume

of the joint con�dence region for the parameters, since this is proportional

to |X′X|−1/2, where X is the polynomial model matrix, given the treatment

design, with ith row f(xi )
′.

This is correct, �with σ2 known or else (pure error degrees of freedom) the

same for all designs� (Kiefer, 1959).
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DP-optimality

However, the con�dence region is actually proportional to

(Fp,d ;1−α)p/2 |X′X|−1/2,

where p is the number of parameters in the model, d is the number of pure

error degrees of freedom and Fp,d ;1−α is the 1− α quantile of the F
distribution with p numerator and d denominator degrees of freedom.

Thus the DP(α) criterion is to minimise

(Fp,d ;1−α)p

|X′X|
.
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DPS -optimality

Similarly, to minimise the volume of a joint con�dence region for a subset

of p2 of the parameters, the (DP)S criterion is to minimise

(Fp2,d ;1−α)p2 |(M−1)22|,

where (M−1)22 is the portion of M−1 = (X′X)−1 corresponding to the p2
parameters of interest.

Note that if the nuisance parameters are the intercept or the intercept plus

block e�ects, then standard DS -optimality reduces to D-optimality, but

(DP)S does not reduce to DP . Hence, (DP)S is usually more useful than

DP .

(DP)S with the subset of p2 parameters being those of second order should

be used when a major objective of the experiment is to compare the �rst

order model with the second order model.
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Other criteria

LP-optimality for con�dence intervals on single parameters, or

functions of parameters;

GP-optimality for con�dence intervals on predicted responses;

IP-optimality for con�dence intervals on predicted responses;

TP-optimality for comparing non-nested models.

Usually, the inference actually done will be related to (DP)S or LP .
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Comments

1 The general idea appears in Fisher (1966, p.242-245) in the context of

sample size calculations, but based on �ducial probability: it �is

unintelligible only to those who over a long period resisted the

cogency of the �ducial argument�.

2 With unstructured treatments, the number of distinct treatments is

constant, so d depends only on the total number of experimental units

and hence the new criteria are identical to the standard criteria.

3 As d →∞, the new criteria converge to the standard criteria. Hence

in very large experiments, the designs chosen will be the same.

4 The concept of continuous design is not meaningful with the new

criteria, since the quantiles of the F distributions are not proportional

to n.

5 The standard versions of most criteria are meaningful in terms of point

estimation, so the choice depend on the proposed analysis.
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Multiple analyses

If a joint con�dence region or a global F-test of the treatment parameters

will be the only relevant analysis, then a (DP)S -optimum design should be

chosen.

However, this is not how experimental data are usually analysed.
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Multiple criteria

In practice, several types of data analysis are important, not all of them

requiring an estimate of error, e.g.:

1 a global F-test of the treatment parameters, for which we should use

(DP)S -optimality;

2 t-tests of the individual treatment parameters, for which we should use

weighted-AP-optimality;

3 point estimation of the individual treatment parameters, for which we

should use D- or weighted-A-optimality;

4 checking for lack of �t of the assumed treatment model and, if

appropriate, �tting a few higher order terms, for which we use

degree-of-freedom e�ciency (for now).
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E�ciencies

De�ne the following e�ciencies, for the design with treatment model

matrix X which has d pure error degrees of freedom:

(DP)S -e�ciency:

E1 =
|X′Q0X|

1
p−1Fp−1,dD ;1−α1

Fp−1,d ;1−α1 |(X′DPQ0XDP)|
1

p−1
,

where XDP is the model matrix for the (DP)S -optimum design, which

has dD degrees of freedom for pure error, and the global F-test will be

performed at the 100α1% level of signi�cance.
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E�ciencies

Weighted-AP-e�ciency,

E2 =
tr{W(X′APXAP)−1}F1,dA;1−α2

tr{W(X′X)−1}F1,d ;1−α2
,

where XAP is the model matrix for the weighted-AP optimum design,

which has dA degrees of freedom for pure error and the individual

t-tests will be calculated at the 100α2% level of signi�cance.
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E�ciencies

Weighted-A-e�ciency,

E3 =
tr{W(X′AXA)−1}
tr{W(X′X)−1}

,

where XA is the model matrix for the weighted-A optimum design.

Degree-of-freedom e�ciency,

E4 =
n − d

n
.
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Compound criterion

Use weights κ1, . . . , κ4 respectively to get E = Eκ1
1
Eκ2
2
Eκ3
3
Eκ4
4
.

Choose a design to maximise

|X′Q0X|
κ1
p−1 (n − d)κ4

(Fp−1,d ;1−α1)κ1(F1,d ;1−α2)κ2 [tr{W(X′X)−1}]κ2+κ3
. (5)

The weights κ should be chosen to re�ect the relative importance of

di�erent aspects of the analysis.

What about prediction?
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Prediction of Responses

For any point x ∈ X ,

var(ŷ(x)) = σ2f(x)′(X′X)−1f(x).

An I -optimum design minimizes the average variance of predictions over X .
Let Ψ =

∫
x∈X dx be the volume of X . Then

average variance = Ψ−1
∫
x∈X

var(ŷ(x))dx ∝
∫
x∈X

f(x)′(X′X)−1f(x)dx.

It can be shown that

average variance ∝ trace
[
M(X′X)−1

]
,

whereM =
∫
x∈X f(x)f(x)′dx is the moment matrix of the region.

For spherical and cubic regions and the second order model,M is given

explicitly in Hardin and Sloane (1991a,1991b).
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Di�erences in Response

We are often interested in di�erences between the response at the expected

optimum or standard operating conditions and the response at other

locations, i.e. y(x)− y(x0).

If x0 = 0 the focus should be on estimating y(x)− β0.

Several arguments for this:

Randomization ensures unbiased estimation of βj for j 6= 0, but not

for β0, which requires the experimental units to be a random sample

from a population of units.

Estimating the location of the optimum, identifying ridges and

canonical analysis do not depend on β0.

If x0 = 0 are standard operating conditions, then we already know β0
and the best prediction is ỹ(x) = β0 + ŷ(x)− β̂0.
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Designs for Di�erences in Response

Since

var[ỹ(x)] = var[ŷ(x)− β̂0] = var[ŷ(x)− ŷ(x0)],

even if we want to predict the response, we should optimize the prediction

of di�erences in response.

De�ne the ID criterion to be to minimize

average di�erence variance = Ψ−1
∫
x∈X

var[ŷ(x)− ŷ(x0)]dx

∝
∫
x∈X

[f(x)− f(x0)]′(X′X)−1[f(x)− f(x0)]dx.

For x0 = 0 we have

average di�erence variance ∝ trace
[
M0(X′X)−1

]
,

whereM0 =
∫
x∈X [f(x)− f(0)][f(x)− f(0)]′dx andM0 is theM matrix

with �rst row and �rst column set to zero.
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Example 1: Cassava Bread

Three factors in 26 runs:

X1 amount of powder albumen;

X2 amount of yeast;

X3 amount of cassava �our.

Cubic region of interest, several response variables.

Experimenters used CCD; we consider alternatives.
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Properties of Designs

E�ciency

Criterion df(PE, LoF)† DS (DP)S AS (AP)S I (IP) ID (IDP)
DS , AS ( 9, 7) 100.00 86.77 100.00 95.50 75.80 72.32 91.93 87.00
(DP)S (15, 1) 93.81 100.00 87.12 93.72 69.62 74.82 83.47 88.98
(AP)S (12, 4) 98.79 97.45 97.13 100.00 72.30 74.36 89.23 91.02

I (5, 11) 90.71 52.42 87.71 64.87 100.00 73.88 99.87 73.19
(IP) (12, 4) 79.79 78.70 72.80 74.95 97.23 100.00 87.47 89.23
ID (5, 11) 93.36 53.96 90.67 67.06 97.22 71.83 100.00 73.28

(IDP) (12, 4) 95.29 93.99 92.11 94.82 92.00 94.63 98.03 100.00

CCD (11, 5) 90.89 86.56 82.43 83.16 84.70 85.37 87.99 87.95
BBD (13, 3) 78.71 79.99 70.79 74.13 68.64 71.81 58.70 60.90

†df(PE, LoF): degrees of freedom for pure error, degrees of freedom for lack of �t.
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Graphical Comparison
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Example 1
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Example 2

Five factors in a spherical region, n = 30.

ID -optimal design turns out to be a CCD.

E�ciency

Criterion df(PE, LoF)† DS (DP)S AS (AP)S I (IP) ID (IDP)
DS , I (0, 9) 100.00 0.00 94.02 0.00 100.00 0.00 60.31 0.00
(DP)S (9, 0) 86.30 100.00 74.33 90.36 74.73 97.81 52.80 63.56

AS (1, 8) 98.16 1.35 100.00 3.85 92.86 3.85 81.20 3.10
(AP)S (8, 1) 87.39 94.39 85.48 100.00 74.34 93.64 84.84 98.28
(IP) (8, 1) 88.84 95.95 79.04 92.47 79.39 100.00 54.37 62.99

CCD, ID (3, 6) 96.96 38.09 95.25 58.51 91.82 60.73 100.00 60.82
(IDP) (8, 1) 85.37 92.20 83.63 97.83 72.21 90.95 86.32 100.00

†df(PE, LoF): degrees of freedom for pure error, degrees of freedom for lack of �t.
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Graphical Comparison
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Figure: DVDG for point predictions vs. relative volume of the region of designs in
Example 2
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CCDs which are ID-optimal

The ID -optimality in a spherical region of the CCD is not unique to this run

size.

For three factors, the CCD is ID -optimal for 17 ≤ n ≤ 20, i.e. 3 to 6

centre points.

For four factors, the CCD is ID -optimal for 28 ≤ n ≤ 32, i.e. 4 to 8

centre points.

For �ve factors, the CCD, with a half-replicate of the factorial points,

is ID -optimal for 30 ≤ n ≤ 33, i.e. 4 to 7 centre points.

For six factors, the CCD, with a half-replicate of the factorial points, is

ID -optimal for 50 ≤ n ≤ 55, i.e. 6 to 11 centre points.
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Current and Further Work

Improved criteria for testing lack of �t.

Designs for interval prediction - (IP) and (IDP) criteria.

Theoretical results on compound criteria - do we really need them all?

Not just polynomial response surfaces.

EPSRC grant Multi-Objective Optimal Design of Experiments.

Thank You!

Questions?
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