You are viewing information for England.  Change country or region.

Biological science: from genes to species

This module explores a range of advanced topics in biological science from evolution to cell and molecular biology. You will learn about fundamental aspects of modern biology through the study of speciation and evolutionary processes, the origin of variation and genome evolution, the control of gene expression and cell behaviour, the life and death of cells, development and ageing. Building on Cell biology (S294) and The biology of survival (S295), this module will extend your understanding of these diverse topics in biology, as well as further developing your key research skills through a mix of onscreen practical and scientific literacy activities and ‘at home’ field-based investigations.

What you will study

Biology encompasses all aspects of the study of living things from their ecology and behaviour, physiology and anatomy, through to their cell biology and molecular composition. You will learn about biological processes operating at different levels - molecular, cellular, organismal and species – and explore key concepts and research methodologies in these areas. The module is presented as a series of eight topics, alongside which is a closely related Research Skills strand.

Topic 1: Species and Speciation
Here you will consider the enormous diversity of life on earth and how it has arisen. You will learn about some of the difficulties in defining species as well as current thinking on the mechanisms of speciation.

Topic 2: Evolutionary Mechanisms
In this Topic you will study the mechanisms of evolution, examining the processes responsible for the diversity of living things. You will consider how variation in populations, which is necessary for evolution to occur, is studied and how it changes over time.

Topic 3: Origin of Variation
With the exception of some viruses, the genomes of all organisms on earth are composed of DNA. Changes in DNA in individuals are the source of variation in a population, which allows evolution to occur. Here you will learn about how and why changes in DNA occur, and the effect of environmental influences on variation. You will also engage with case studies that illustrate how the molecular basis of variation is studied experimentally.

Topic 4: Genomes and genome evolution
The genomes of different species differ considerably in their content and structure. Considering that all life on earth is believed to originate from a common ancestor which existed over 3.5 billion years ago, a great amount of genome evolution must have occurred to give rise to the diversity of present day species. In this topic, you will explore some of the mechanisms by which changes in genes and genomes occur and the methodology by which our current understanding of present day genome structure and content has been achieved. You will also revisit the subject of Topic 1, to consider how genomic changes can contribute towards speciation.

Topic 5: Gene expression and its control
Whilst the characteristics of an organism are determined by its genome, the expression of its component genes varies. Whether or not particular genes are expressed in a particular cell, and the level of their expression, are determined by a variety of control mechanisms. These mechanisms, which can operate over a range of time frames, and at different stages, produce the remarkably different cells that are present in multicellular organisms and determine the behaviour and properties of all cells. In this topic, you will learn about the various types and levels of control of gene expression – the subtle and the less subtle.

Topic 6: Controlling cell behaviour
All organisms, whether unicellular or multicellular, need to respond to their ever-changing environment in order to survive and flourish. In this topic, you will learn about some of the fundamentals of cell signalling - how cells detect and respond to physical changes and chemical cues occurring around and within them. To develop your understanding of common principles that apply to all cell signalling processes, you will explore, in some detail, a particular signalling pathway that operates in the yeast Saccharomyces cerevisiae.

Topic 7: Life and Death of the Cell
This topic takes a look at fascinating biological processes that occur at the beginning and end of the life of a cell. Cell death is a crucial aspect of life, and without cell death organisms would not develop or function correctly. Here you will focus largely on a form of programmed cell death known as apoptosis. At the other extreme, the subject of stem cells, the undifferentiated cells that are found in multicellular organisms and from which the many diverse cells types of the organism are derived, is explored. Stem cell biology and cell death processes are intricately associated with development in multicellular organisms, the subject of the next topic.

Topic 8: Development, morphogenesis and ageing
In this topic, you will move from considering processes purely at the cellular level to relate these processes to what happens at the level of the whole organism. You will begin by focussing on the mechanisms that orchestrate embryonic development in multicellular organisms, before turning to the factors that influence the life span of different organisms, and to those that result in their biological ageing. The topic finishes with a brief consideration of interactions between different organisms by discussing aspects of the relationship between host organisms and their microbiota (the microbes that live in and on them) and how this can influence ageing of the host.

Research Skills strand
You will be directed here at appropriate points in your study of the module topics, to undertake specific activities designed to develop your scientific skills through a mix of ‘at home’ field-based investigations and onscreen practical and scientific literacy activities. The study of organisms, in the field or in the laboratory, is an essential aspect of biological scientific inquiry and the role of what are known as ‘model organisms’ in biological research is a theme that is developed in this strand. The essential skills of reading and assessing published research papers and of extracting data from scientific databases will also be developed.

Entry requirements

This is an OU level 3 module and you need to have a good knowledge of biology, obtained through level 1 and 2 study with the OU, or with another higher education institution. Students who are appropriately prepared have the best chance of completing their studies successfully and get most enjoyment and satisfaction out of the module.

You are expected to be familiar with the biology and chemistry taught in the discontinued module Exploring science (S104), and biology from Cell biology (S294) and The biology of survival (S295). You should also have knowledge of basic maths and principles of experimental design as provided by the discontinued module Investigative and mathematical skills in science (S141).

We strongly recommend that you check whether or not your background and experience are sufficient to give you a sound basis on which to tackle this module, since we have found that students who are appropriately prepared have the best chance of completing their studies successfully and get the most enjoyment out of the module.

The STEM Faculty has produced a document Are you ready for S317? to help you to decide whether you already have the recommended background knowledge or experience to start the module or whether you need a little extra preparation.

If you have any doubt about the suitability of the module, please speak to an adviser.

What's included

You'll have access to a module website, which includes:

  • a week-by-week study planner
  • a module guide
  • all the module topics with embedded multimedia and interactive material
  • materials supporting development of key research skills
  • experimental investigations and instructions for field investigations
  • online tutorial access
  • assignment details and submission section
  • self-assessment quizzes
  • downloadable versions of the module guide, all topics and the guide to the Research Skills strand.

You will need

A scientific calculator.

Computing requirements

A computing device with a browser and broadband internet access is required for this module. Any modern browser will be suitable for most computer activities. Functionality may be limited on mobile devices.

Any additional software will be provided, or is generally freely available. However, some activities may have more specific requirements. For this reason, you will need to be able to install and run additional software on a device that meets the requirements below.

A desktop or laptop computer with either an up-to-date version of Windows or macOS.

The screen of the device must have a resolution of at least 1024 pixels horizontally and 768 pixels vertically.

To join in the spoken conversation in our online rooms we recommend a headset (headphones or earphones with an integrated microphone).

Our Skills for OU study website has further information including computing skills for study, computer security, acquiring a computer and Microsoft software offers for students.

Teaching and assessment

Support from your tutor

Throughout your module studies, you’ll get help and support from your assigned module tutor. They’ll help you by:
  • Marking your assignments (TMAs) and providing detailed feedback for you to improve.
  • Guiding you to additional learning resources.
  • Providing individual guidance, whether that’s for general study skills or specific module content.
  • Facilitating online discussions between your fellow students, in the dedicated module and tutor group forums.
Module tutors also run online tutorials throughout the module. Where possible, recordings of online tutorials will be made available to students. While these tutorials won’t be compulsory for you to complete the module, you’re strongly encouraged to take part. If you want to participate, you’ll likely need a headset with a microphone.

Assessment

The assessment details for this module can be found in the facts box above.

You will be expected to submit your tutor-marked assignments (TMAs) online through the eTMA system unless there are some difficulties which prevent you from doing so. In these circumstances, you must negotiate with your tutor to get their agreement to submit your assignment on paper.

One of the TMAs and the examination will contribute to your overall score for the module. They will assess key scientific skills developed in the module as well as knowledge and understanding of the core topics.

If you have a disability

The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying S317 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

Future availability

Biological science: from genes to species (S317) starts once a year – in October.

This page describes the module that will start in October 2020.

We expect it to start for the last time in October 2022.

Course work includes:

6 Tutor-marked assignments (TMAs)
Examination
No residential school

Student Reviews

See what other students thought.