You are viewing information for England.  Change country.

Data management and analysis

Qualification dates
Start End

This module addresses some of the key concepts required for the traditionally important area of data management, and the increasingly important area of data analytics. You will gain a practical, legal and ethical understanding of how to access, query and manage data collections, using traditional relational databases and contemporary NoSQL approaches. Using real-world datasets, standard software packages and data visualisation techniques, you will learn how to organise and analyse data collections to answer questions about the world, as well as developing an appreciation of user needs surrounding data systems.

What you will study

This module will provide you with a broad overview of the concepts, techniques and tools of modern data management and analysis. It will compare traditional relational databases with an alternative model (a NoSQL database), and will help you learn how to choose the most appropriate means of storing and managing data, depending on the size and structure of a particular dataset and its intended use. You will be introduced to preliminary techniques in data analysis, starting from the position that data is used to answer a question, and introduced to a range of data visualisation and analysis techniques that will instil an understanding of how to start exploring a new data set.

To ensure that you are comfortable with handling datasets, you will explore a range of real-world datasets to illustrate the key concepts in the module. Sources such as, the World Bank, and a range of other national and international agencies may be used to provide appropriate data. You will spend approximately equal time between issues in data management (technical and socio-legal issues in storing and maintaining datasets), and issues in data analytics (understanding how data can be used to answer questions).

The module is framed around a narrative that looks at how to manage and extract value and insight from a range of increasingly large data collections. At each stage, a comparison will be drawn between different ways of representing the data (for example, using different sorts of charts or geographical mapping techniques), and limitations of the mechanisms presented. To enable you to get a feel for the use of data, each stage will also include an overview of some data analysis techniques, including summary reporting and exploratory data visualisation. This module is driven by Richard Hamming's famous quote: 'The purpose of computing is insight, not numbers'.

Some of the key ideas are:

Introducing data analysis

Starting with a data file such as a spreadsheet, this unit will provide you with a brief introduction to some basic operations on simple data files. This will give you an opportunity to study an outline of the key ideas in the module and help you become familiar with the module software.

Concepts in data management

You will look at three key areas in data management: data architectures and data access (CRUD), data integrity, and transaction management (ACID). Each of these topics will be illustrated using a relational database, and one non-relational alternative. The advantages and limitations of each model are discussed.

Legal and ethical issues

Here you will consider the legal and ethical issues involved in managing data collections. You will be required to obtain and read (parts of) the Data Protection Act and the Freedom of Information Act, and demonstrate how these apply to issues in data management. You will also consider privacy, ownership, intellectual property and licensing issues in data collection, management, retrieval and reuse.

Concepts in data analytics

These sections will focus on using data to answer a real question; the focus will be on exploratory techniques (such as visualisation) and formulating a question into a form that can be answered realistically using the data that is available. Issues in processing techniques for large and real-time streamed data collections will also be addressed along with techniques and technologies (such as MapReduce) for handling them. In this part of the module you will use a statistical package such as the python scientific libraries and/or ggplot2 to visualise the data and carry out appropriate analyses.

If you are considering progressing to The computing and IT project (TM470), this is one of the OU level 3 modules on which you could base your project topic. Normally, you should have completed one of these OU level 3 modules (or be currently studying one) before registering for the project module.

Entry requirements

This is an OU level 3 module. OU level 3 modules build on study skills and subject knowledge acquired from previous studies at levels 1 and 2. They are only intended for students with recent experience of higher education in a related subject.

To study this module you should be a competent and experienced programmer, comfortable in programming using a range of languages and environments. Normally, you should have completed Object-oriented Java programming (M250) and Algorithms, data structures and computability (M269).

You are not expected to have a background in statistics, but should be comfortable working with mathematical concepts.

You should also be able to:

  • use your computer to carry out tasks such as writing with a word-processor, creating and managing spreadsheets, saving and locating files, installing software and accessing a website
  • perform simple calculations
  • read and understand written English of a style and complexity characteristic of a professional magazine or quality newspaper
  • write clearly in English.
If you have any doubt about the suitability of the module, please speak to an adviser.

What's included

Module website, online study materials, sample datasets and module software.

Computing requirements

A computing device with a browser and broadband internet access is required for this module.  Any modern browser will be suitable for most computer activities. Functionality may be limited on mobile devices.

Any additional software will be provided from a hardware device e.g. DVD drive or USB stick or is generally freely available. However, some activities may have more specific requirements. For this reason, you will need to be able to install and run additional software on a desktop or laptop computer with either:

  • Windows 7 or higher
  • Mac OS 10.7 or higher
  • a modern Linux version

The screen of the device must have a resolution of at least 1024 pixels horizontally and 768 pixels vertically.

To participate in our online-discussion area you will need both a microphone and speakers/headphones. 

Our Skills for OU study website has further information including computing skills for study, computer security, acquiring a computer and Microsoft software offers for students. 

Teaching and assessment

Support from your tutor

You will have a tutor who will help you with the study material, who will mark and comment on your written work, and whom you can ask for advice and guidance. We may also be able to offer group tutorials that you are encouraged, but not obliged, to attend. Where your tutorials are held will depend on the distribution of students taking the module. There will also be online tutorials and other collaborative activities (such as student forums), which will take place in the online forum for your tutor group. Throughout the module you can use this forum to keep in touch with your tutor and fellow students.

Contact us if you want to know more about study with The Open University before you register.


The assessment details for this module can be found in the facts box above.

You must use the online eTMA system to submit your tutor-marked assignments (TMAs).

If you have a disability

The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying TM351 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

Future availability

Data management and analysis (TM351) starts once a year – in October (places are limited and in high demand, so enrol early). This page describes the module that will start in October 2018. We expect it to start for the last time in October 2021.

Course work includes:

2 Tutor-marked assignments (TMAs)
7 Interactive computer-marked assignments (iCMAs)
End-of-module assessment
No residential school

Student Reviews

See what other students thought.

Course satisfaction survey

See the satisfaction survey results for this course.