You are viewing information for England.  Change country or region.

The quantum world

If you're interested in the fundamental laws of modern physics and how mathematics is used to state and apply these laws, this module is for you. It surveys the physical principles, mathematical techniques and interpretation of quantum theory. The Schrödinger equation, the uncertainty principle, the exclusion principle, fermions and bosons, measurement probabilities, entanglement, perturbation theory and transition rates are all discussed. Applications include atoms, molecules, nuclei, solids, scanning tunnelling microscopy and quantum cryptography. The module also presents recent evidence relating to some of the most surprising and non-classical predictions of quantum mechanics.

Modules count towards OU qualifications

OU qualifications are modular in structure; the credits from this undergraduate module could count towards a certificate of higher education, diploma of higher education, foundation degree or honours degree.

Browse qualifications in related subjects


Module code


  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
Study level
Across the UK, there are two parallel frameworks for higher education qualifications, the Framework for Higher Education Qualifications in England, Northern Ireland and Wales (FHEQ) and the Scottish Credit and Qualifications Framework (SCQF). These define a hierarchy of levels and describe the achievement expected at each level. The information provided shows how OU module levels correspond to these frameworks.
3 10 6
Study method
Distance Learning
Module cost
See Module registration
Entry requirements
See Entry requirements

Student Reviews

The course content and course books are very good; well-written, clear and interesting. Assessment isn't onerous - relatively short TMAs...
Read more

We are very pleased that the course content, books and assessment are well-received. It is very helpful to have comments...
Read more

Absolutely fascinating course. Found it challenging, but not impossible and extremely interesting. One of the best courses I have ever...
Read more

Request your prospectus

Explore our subjects and courses

Request your copy now

What you will study

Quantum mechanics is famous for challenging our intuitive view of the world. However, it does not simply frustrate classical mechanics: it replaces it by a clear and precise formalism and a set of principles that allow exact calculations to be made. This puts the subject in a unique position. Whilst it challenges our intuitions, it provides the concepts and quantitative predictions needed by applied physicists, chemists and technologists who wish to interpret and control phenomena on the nanoscale and below.

This module will give you a detailed understanding of the physical principles and mathematical techniques of quantum mechanics. Building on this understanding, you’ll learn about the interpretation of quantum mechanics in the light of recent experiments and discover how quantum mechanics is used to explain the behaviour of physical systems, from nuclei and atoms to molecules and solids.

The study materials include three books, accompanied by DVD-ROMs containing computer-based activities and video materials.

Book 1, Wave Mechanics, begins with a wide-ranging introduction to the quantum revolution. It then develops Schrödinger’s equation, together with the concepts of wave functions, expectation values and uncertainties. Schrödinger’s equation is solved for simple model systems such as particles in boxes and harmonic oscillators. You will also learn how the equation can be used in various applications including quantum dots and vibrating molecules. The concept of a wave packet is introduced and used to describe the classical limit of quantum mechanics. Finally, the quantum processes of tunnelling, barrier penetration and reflection are discussed, together with their application to nuclear fusion, alpha decay, and the scanning tunnelling microscope. The mathematical techniques used and developed in this book include complex numbers, separation of variables, integration, differential equations and eigenvalues.

Book 2, Quantum Mechanics and its interpretation, gives a more general discussion of quantum mechanical principles. It shows how quantum states can be represented by vectors in a vector space, with observable quantities represented by operators acting on the vectors. This formalism is used to derive quantum mechanical conservation laws and to provide a proof of the uncertainty principle. The properties of orbital and spin angular momentum are introduced and the extraordinary properties of systems of identical particles, including Bose-Einstein condensation, are explored. The book then discusses some fascinating topics in the interpretation of quantum mechanics, supported by the results of recent experiments. The process of measurement in quantum mechanics cannot be described by Schrödinger’s equation and appears to involve chance in an unavoidable way. The book ends by discussing the concept of entanglement, and its applications to quantum encryption and quantum teleportation. The mathematical techniques used and developed in this book include vector spaces, Hermitian operators and matrix algebra.

Book 3, The Quantum Mechanics of Matter shows how quantum mechanical methods are used to explain the behaviour of matter, from the scale of nuclei and atoms to molecules and solids. The hydrogen atom is discussed in detail, as well as hydrogen-like systems such as positronium. The useful technique of perturbation theory is developed to obtain approximate results in cases where exact calculations become difficult. The book goes on to discuss multi-electron atoms and the Periodic Table, molecular binding and the behaviour of electrons in the energy bands of metals, insulators and semiconductors. Finally, the book considers the interaction of matter with light. You will see how quantum mechanics can predict the lifetimes of atomic states and the brightness of spectral lines.

You will learn

In this module, you will learn the fundamental principles of quantum mechanics and the mathematical techniques needed to state and apply them. You will explore the interpretation of quantum mechanics and critically evaluate the extent to which quantum mechanics has been tested by experiment. You will also see how quantum mechanical methods are used to model phenomena in physical systems including atoms, molecules and solids.

Professional recognition

This module, when studied as part of an honours degree in the physical sciences or engineering, can help you gain membership of the Institute of Physics (IOP). For further information about the IOP, visit their website.

This module may also help you to gain membership of the Institute of Mathematics and its Applications (IMA). For further information, see the IMA website.

Teaching and assessment

Support from your tutor

Throughout your module studies, you’ll get help and support from your assigned module tutor. They’ll help you by:

  • Marking your assignments (TMAs) and providing detailed feedback for you to improve.
  • Guiding you to additional learning resources.
  • Providing individual guidance, whether that’s for general study skills or specific module content.
  • Facilitating online discussions between your fellow students, in the dedicated module and tutor group forums.

Module tutors also run online tutorials throughout the module. Where possible, recordings of online tutorials will be made available to students. While these tutorials won’t be compulsory for you to complete the module, you’re strongly encouraged to take part. If you want to participate, you’ll likely need a headset with a microphone.


The assessment details for this module can be found in the facts box above.

You will be expected to submit your tutor-marked assignments (TMAs) online through the eTMA system unless there are some difficulties which prevent you from doing so. In these circumstances, you must negotiate with your tutor to get their agreement to submit your assignment on paper.

You will, however, be granted the option of submitting on paper if typesetting electronically or merging scanned images of your answers to produce an electronic TMA would take you an unacceptably long time.

There will be a mixture of online interactive computer-marked assignments (iCMAs) and short tutor-marked assignments (TMAs), with a total workload equivalent of three full TMAs.

Both the iCMAs and TMAs will focus strongly on learning through practice rather than on assessment. The feedback you receive on your answers will help you to improve your knowledge and understanding of the study material and to develop important skills associated with the module. The feedback on the iCMAs will be instantaneous and hints will be given so that you can refine any incorrect answers. Although your scores on all these assignments will not contribute directly to your module grade, they form an essential part of the learning process and you will be required to submit a proportion of them to complete the module. You will be given detailed information when you start the module.

Future availability

The quantum world (SM358) starts once a year – in October.

This page describes the module that will start in October 2021.

We expect it to start for the last time in October 2021.


As a student of The Open University, you should be aware of the content of the academic regulations which are available on our Student Policies and Regulations website.

    Course work includes:

    4 Tutor-marked assignments (TMAs)
    6 Interactive computer-marked assignments (iCMAs)
    No residential school

    Entry requirements

    This is an OU Level 3 module that builds on study skills and subject knowledge acquired from previous studies at OU Levels 1 and 2. It is intended for students who have recent experience of higher education in a related subject at this level.

    The module is designed to follow Mathematical methods (MST224) or Mathematical methods, models and modelling (MST210), and Physics: from classical to quantum (S217). You would find it very difficult to study SM358 without the necessary mathematical background. The parts of MST224 or MST210 relating to matrices, ordinary and partial differential equations are especially important. S217 is the ideal physics module to prepare you for studying SM358, particularly the parts relating to classical and quantum mechanics. Students are most successful if they have acquired their prerequisite knowledge through passing these OU level 2 physics and mathematics modules.

    It's essential that you establish whether or not your background and experience give you a sound basis on which to tackle SM358. We've produced a booklet Are You Ready For SM358? to help you decide whether you already have the recommended background knowledge and experience to start the module or whether you need some extra preparation.

    If you have any doubt about the suitability of the module, please speak to an adviser.


    Start End England fee Register
    02 Oct 2021 Jun 2022 £1584.00

    Registration closes 09/09/21 (places subject to availability)

    October 2021 is the final start date for this course. For more information, see Future availability.

    Additional Costs

    Study costs

    There may be extra costs on top of the tuition fee, such as set books, a computer and internet access.

    If your income is not more than £25,000 or you are in receipt of a qualifying benefit, you might be eligible for help with some of these costs after your module has started.

    Ways to pay for this module

    Open University Student Budget Account

    The Open University Student Budget Accounts Ltd (OUSBA) offers a convenient 'pay as you go' option to pay your OU fees, which is a secure, quick and easy way to pay. Please note that The Open University works exclusively with OUSBA and is not able to offer you credit facilities from any other provider. All credit is subject to status and proof that you can afford the repayments.

    You pay the OU through OUSBA in one of the following ways:

    • Register now, pay later – OUSBA pays your module fee direct to the OU. You then repay OUSBA interest-free and in full just before your module starts. 0% APR representative. This option could give you the extra time you may need to secure the funding to repay OUSBA.
    • Pay by instalments – OUSBA calculates your monthly fee and number of instalments based on the cost of the module you are studying. APR 5.1% representative.

    Joint loan applications

    If you feel you would be unable to obtain an OUSBA loan on your own due to credit history or affordability issues, OUSBA offers the option to apply for a joint loan application with a third party. For example, your husband, wife, partner, parent, sibling or friend. In such cases, OUSBA will be required to carry out additional affordability checks separately and/or collectively for both joint applicants who will be jointly and severally liable for loan repayments.

    As additional affordability checks are required when processing joint loan applications, unfortunately, an instant decision cannot be given. On average the processing time for a joint loan application is five working days from receipt of the required documentation.

    Read more about Open University Student Budget Accounts (OUSBA).  

    Employer sponsorship

    Studying with The Open University can boost your employability. OU courses are recognised and respected by employers for their excellence and the commitment they take to complete. They also value the skills that students learn and can apply in the workplace.

    More than one in ten OU students are sponsored by their employer, and over 30,000 employers have used the OU to develop staff so far. If the module you’ve chosen is geared towards your job or developing your career, you could approach your employer to see if they will sponsor you by paying some or all of the fees. 

    • Your employer just needs to complete a simple form to confirm how much they will be paying and we will invoice them.
    • You won’t need to get your employer to complete the form until after you’ve chosen your module.  

    Credit/debit card

    You can pay part or all of your tuition fees upfront with a debit or credit card when you register for each module. 

    We accept American Express, Mastercard, Visa and Visa Electron. 

    Mixed payments

    We know that sometimes you may want to combine payment options. For example, you may wish to pay part of your tuition fee with a debit card and pay the remainder in instalments through an Open University Student Budget Account (OUSBA).

    Please note: your permanent address/domicile will affect your fee status and therefore the fees you are charged and any financial support available to you. The fees and funding information provided here is valid for modules starting before 31 July 2022. Fees normally increase annually in line with inflation and the University's strategic approach to fees. 

    This information was provided on 12/04/2021.

    What's included

    You'll have access to a module website, which includes:

    • a week-by-week study planner
    • course-specific module materials
    • audio and video content
    • assignment details and submission section
    • online tutorial access.

    You'll also be provided with three printed module books, each covering one block of study, a printed glossary and a DVD pack containing interactive computer packages and video material.

    You will need

    Basic scientific calculator.

    Computing requirements

    You'll need a desktop or laptop computer with an up-to-date version of 64-bit Windows 10 (note that Windows 7 is no longer supported) and broadband internet access.

    To join in spoken conversations in tutorials we recommend a wired headset (headphones/earphones with a built-in microphone).

    Our module websites comply with web standards and any modern browser is suitable for most activities.

    Our OU Study mobile App will operate on all current, supported, versions of Android and iOS. It's not available on Kindle.

    It's also possible to access some module materials on a mobile phone, tablet device or Chromebook, however, as you may be asked to install additional software or use certain applications, you'll also require a desktop or laptop as described above.

    If you have a disability

    The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying SM358 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

    To find out more about what kind of support and adjustments might be available, contact us or visit our Disability support website.