You are viewing information for England.  Change country.

Graphs, networks and design

This module is about using ideas from discrete mathematics to model problems, and representing these ideas through diagrams. The word ‘graphs’ refers to diagrams consisting of points joined by lines. These points may correspond to chemical atoms, towns, electrical terminals or anything that can be connected in pairs. The lines may be chemical bonds, roads, wires or other connections. The main topics of mathematical interest are graphs and digraphs; network flows; block designs; geometry; codes; and mathematical modelling. Application areas covered include communications; structures and mechanisms; electrical networks; transport systems; social networks; and computer science. To study this module you should have a sound knowledge of relevant mathematics provided by the appropriate OU level 2 study.

Modules count towards OU qualifications

OU qualifications are modular in structure; the credits from this undergraduate module could count towards a certificate of higher education, diploma of higher education, foundation degree or honours degree.

Browse qualifications in related subjects

Module

Module code
MT365
Credits

Credits

  • Credits measure the student workload required for the successful completion of a module or qualification.
  • One credit represents about 10 hours of study over the duration of the course.
  • You are awarded credits after you have successfully completed a module.
  • For example, if you study a 60-credit module and successfully pass it, you will be awarded 60 credits.
30
Study level
Across the UK, there are two parallel frameworks for higher education qualifications, the Framework for Higher Education Qualifications in England, Northern Ireland and Wales (FHEQ) and the Scottish Credit and Qualifications Framework (SCQF). These define a hierarchy of levels and describe the achievement expected at each level. The information provided shows how OU module levels correspond to these frameworks.
OU SCQF FHEQ
3 10 6
Study method
Distance Learning
Module cost
See Module registration
Entry requirements
See Entry requirements

Student Reviews

This is an excellent course covering a wide range of mathematics from graph theory to code design. Some reviewers have...
Read more

Of the modules I'd taken at this point MT365 was my least favourite of all. Unlike other maths modules this...
Read more

Our modules are designed to suit different interests and MT365 could be described as 'broad but not deep'. We regret...
Read more

Request your prospectus

Explore our subjects and courses

Request your copy now

What you will study

What codes are used by spacecraft in communicating with Earth? Where do you brace a framework to make it rigid? How many colours are needed for a map to ensure that neighbouring countries have different colours? How can you assign people to jobs for which they are qualified? These are some of the questions to be answered in the module. The problems range from those arising in technology, operational research and the sciences to puzzles of a recreational nature. We show the connections between problems in widely differing areas and describe methods for their solution that use the properties they have in common.

The material is presented in a down-to-earth manner, with the emphasis on solving problems and applying algorithms, rather than on abstract ideas and proofs.

The module is divided into three related areas: graphs, networks and design. The Introduction introduces two themes of the module, combinatorics and mathematical modelling, and illustrates them with examples from the three areas.

Graphs 1: Graphs and digraphs discusses graphs and digraphs in general, and describes the use of graph theory in genetics, ecology and music, and of digraphs in the social sciences. We discuss Eulerian and Hamiltonian graphs and related problems; one of these is the well-known Königsberg bridges problem.

Networks 1: Network flows is concerned with the problem of finding the maximum amount of a commodity (gas, water, passengers) that can pass between two points of a network in a given time. We give an algorithm for solving this problem, and discuss important variations that frequently arise in practice.

Design 1: Geometric design, concerned with geometric configurations, discusses two-dimensional patterns such as tiling patterns, and the construction and properties of regular and semi-regular tilings, and of polyominoes and polyhedra.

Graphs 2: Trees Trees are graphs occurring in areas such as branching processes, decision procedures and the representation of molecules. After discussing their mathematical properties we look at their applications, such as the minimum connector problem and the travelling salesman problem.

Networks 2: Optimal paths How does an engineering manager plan a complex project encompassing many activities? This application of graph theory is called ‘critical path planning’. It is one of the class of problems in which the shortest or longest paths in a graph or digraph must be found.

Design 2: Kinematic design The mechanical design of table lamps, robot manipulators, car suspension systems, space-frame structures and other artefacts depends on the interconnection of systems of rigid bodies. This unit discusses the contribution of combinatorial ideas to this area of engineering design.

Graphs 3: Planarity and colouring When can a graph be drawn in the plane without crossings? Is it possible to colour the countries of any map with just four colours so that neighbouring countries have different colours? These are two of several apparently unrelated problems considered in this unit.

Networks 3: Assignment and transportation If there are ten applicants for ten jobs and each is suitable for only a few jobs, is it possible to fill all the jobs? If a manufacturer supplies several warehouses with a product made in several factories, how can the warehouses be supplied at the least cost? These problems of the system-management type are answered in this unit.

Design 3: Design of codes Redundant information in a communication system can be used to overcome problems of imperfect reception. This section discusses the properties of certain codes that arise in practice, in particular cyclic codes and Hamming codes, and some codes used in space probes.

Graphs 4: Graphs and computing describes some important uses of graphs in computer science, such as depth-first and breadth-first search, quad trees, and the knapsack and travelling salesman problems.

Networks 4: Physical networks Graph theory provides a unifying method for studying the current through an electrical network or water flow through pipes. This unit describes the graphical representation of such networks.

Design 4: Block designs If an agricultural research station wants to test different varieties of a crop, how can a field be designed to minimise bias due to variations in the soil? The answer lies in block designs. This unit explains the concepts of balanced and resolvable designs and gives methods for constructing block designs.

Conclusion In this unit, many of the ideas and problems encountered in the module are reviewed, showing how they can be generalised and extended, and the progress made in finding solutions is discussed.

You will learn

Successful study of this module should enhance your skills in finding solutions to problems, interpreting mathematical results in real-world terms and communicating mathematical ideas clearly to both experts and non-experts.

Professional recognition

This module may help you to gain membership of the Institute of Mathematics and its Applications (IMA). For further information, see the IMA website.

Teaching and assessment

Support from your tutor

You will have a tutor who will help you with the study material and mark and comment on your written work, and whom you can ask for advice and guidance. We may also be able to offer group tutorials or day schools that you are encouraged, but not obliged, to attend. Where your tutorials are held will depend on the distribution of students taking the module. 

Contact us if you want to know more about study with The Open University before you register.

Assessment

The assessment details for this module can be found in the facts box above.

You can choose whether to submit your tutor-marked assignments (TMAs) on paper or online through the eTMA system. You may want to use the eTMA system for some of your assignments but submit on paper for others. This is entirely your choice.

Future availability

Graphs, networks and design starts once a year – in October. This page describes the module that will start in October 2018. We expect it to start for the last time in October 2022.

Regulations

As a student of The Open University, you should be aware of the content of the academic regulations which are available on our Student Policies and Regulations website.

    Course work includes:

    4 Tutor-marked assignments (TMAs)
    4 Interactive computer-marked assignments (iCMAs)
    Examination
    No residential school

    Course satisfaction survey

    See the satisfaction survey results for this course.


    Entry requirements

    There are no formal entry requirements.

    Preparatory work

    You need pre-requisite mathematical skills and knowledge: familiarity algebraic manipulation and the idea of proof, and experience of matrix multiplication would be an advantage – check you’re ready for MT365 with our self-assessed quiz.

    You’d normally be prepared by completing OU level 1 and 2 study as part of one of our qualifications in mathematics, science or technology. For this module, we recommend that you’ve passed Essential mathematics 1 (MST124), Essential mathematics 2 (MST125) and 60 credits at OU level 2 in mathematics, science or technology.

    If you’re not sure you’re ready, talk to an adviser.

    Register

    Start End Fee
    - - -

    No current presentation - see Future availability

    This module is expected to start for the last time in October 2022.

    Additional Costs

    Study costs

    There may be extra costs on top of the tuition fee, such as a laptop, travel to tutorials, set books and internet access.

    If you're on a low income you might be eligible for help with some of these costs after your module has started.

    Ways to pay for this module

    Open University Student Budget Account

    The Open University Student Budget Accounts Ltd (OUSBA) offers a convenient 'pay as you go' option to pay your OU fees, which is a secure, quick and easy way to pay. Please note that The Open University works exclusively with OUSBA and is not able to offer you credit facilities from any other provider. All credit is subject to status and proof that you can afford the repayments.

    You pay the OU through OUSBA in one of the following ways:

    • Register now, pay later – OUSBA pays your module fee direct to the OU. You then repay OUSBA interest-free and in full just before your module starts. 0% APR representative. This option could give you the extra time you may need to secure the funding to repay OUSBA.
    • Pay by instalments – OUSBA calculates your monthly fee and number of instalments based on the cost of the module you are studying. APR 5.1% representative.

    Joint loan applications

    If you feel you would be unable to obtain an OUSBA loan on your own due to credit history or affordability issues, OUSBA offers the option to apply for a joint loan application with a third party. For example, your husband, wife, partner, parent, sibling or friend. In such cases, OUSBA will be required to carry out additional affordability checks separately and/or collectively for both joint applicants who will be jointly and severally liable for loan repayments.

    As additional affordability checks are required when processing joint loan applications, unfortunately, an instant decision cannot be given. On average the processing time for a joint loan application is five working days from receipt of the required documentation.

    Read more about Open University Student Budget Accounts (OUSBA).  

    Employer sponsorship

    Studying with The Open University can boost your employability. OU courses are recognised and respected by employers for their excellence and the commitment they take to complete. They also value the skills that students learn and can apply in the workplace.

    More than one in ten OU students are sponsored by their employer, and over 30,000 employers have used the OU to develop staff so far. If the module you’ve chosen is geared towards your job or developing your career, you could approach your employer to see if they will sponsor you by paying some or all of the fees. 

    • Your employer just needs to complete a simple form to confirm how much they will be paying and we will invoice them.
    • You won’t need to get your employer to complete the form until after you’ve chosen your module.  

    Credit/debit card

    You can pay part or all of your tuition fees upfront with a debit or credit card when you register for each module. 

    We accept American Express, Maestro (UK only), Mastercard, Visa/Delta and Visa Electron. 

    Mixed payments

    We know that sometimes you may want to combine payment options. For example, you may wish to pay part of your tuition fee with a debit card and pay the remainder in instalments through an Open University Student Budget Account (OUSBA).


    For more information about combining payment options, speak to an adviser or book a call back at a time convenient to you.


    Please note: your permanent address/domicile will affect your fee status and therefore the fees you are charged and any financial support available to you. The fees and funding information provided here is valid for modules starting before 31 July 2019. Fees normally increase annually in line with inflation and the University's strategic approach to fees. 

    This information was provided on 17/12/2018.

    What's included

    Module books, CDs, DVDs, software and a website.

    You will need

    CD player and DVD player (or computer able to play DVDs).

    You require access to the internet at least once a week during the module to download module resources and assignments, submit assignments and to keep up to date with module news.

    Computing requirements

    A computing device with a browser and broadband internet access is required for this module.  Any modern browser will be suitable for most computer activities. Functionality may be limited on mobile devices.

    Any additional software will be provided from a hardware device e.g. DVD drive or USB stick or is generally freely available. However, some activities may have more specific requirements. For this reason, you will need to be able to install and run additional software on a desktop or laptop computer with Windows 7 or higher.

    The screen of the device must have a resolution of at least 1024 pixels horizontally and 768 pixels vertically.

    To participate in our online-discussion area you will need both a microphone and speakers/headphones. 

    Our Skills for OU study website has further information including computing skills for study, computer security, acquiring a computer and Microsoft software offers for students. 

    If you have a disability

    The OU strives to make all aspects of study accessible to everyone and this Accessibility Statement outlines what studying MT365 involves. You should use this information to inform your study preparations and any discussions with us about how we can meet your needs.

    To find out more about what kind of support and adjustments might be available, contact us or visit our Disability support website.